Course Structure
for Degree Programme
B. Tech. in Civil Engineering

with effect from AY 2018-19
Goal of the Civil engineering with a specialization in Structural Engineering (SE) at Dr. Babasaheb Ambedkar technological University, Lonere (BATU) is to provide students with preparation to become worthy of professional careers in the field and to be motivated for lifelong learning. All prescribed courses have definite objectives and outcomes. Program objectives are expected qualities of engineers as under:

Program Objectives

a) Preparation: To prepare students to excel in various educational programmes or to succeed in industry / technical profession through further education/training;

b) Core Competence: To provide students with a solid foundation in mathematical, scientific fundamentals required to solve Structural problems;

c) Breadth: To train students with a breadth of scientific knowledge to comprehend, analyze, design & create novel products and solutions for real life problems;

d) Professionalism: To inculcate in students professional/ethical attitude, effective team work skills, multidisciplinary approach and to relate engineering issues to a broader context;

e) Learning Environment: To provide students with academic environment of excellence, leadership, ethical guidelines and life-long learning needed for a long / productive career.

In addition to above DBATU graduate is expected to be

1. Taking pride in their profession and have commitment to highest standards of ethical practices and related technical disciplines;

2. Able to design structural system that is safe, economical and efficient;

3. Capable of using modern tools efficiently in all aspects of professional practices;

4. Dealing successfully with real life civil engineering problems and achieve practical solutions based on a sound science and engineering knowledge;

5. Shall be engage in continuous research, development and exchange of knowledge for professional development;

6. Be honest in their control and performing their duties and promote effective use of resources through open, honest and impartial services to the public;

7. Act in such a manner which will uphold the honour, integrity, or dignity of the engineering profession, and avoid knowingly engaging in business or professional practices of a fraudulent, dishonest or unethical nature;

8. Recognize that the lives, safety, health and welfare of the general public are dependent upon engineering, decision and practices;

9. Continue their professional development throughout their careers and provide opportunities for the professional development;
Course Structure

Evaluation Scheme

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Particulars of Evaluation</th>
<th>MSE</th>
<th>CA</th>
<th>ESE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA1</td>
<td>CA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Internal</td>
<td>External</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Theory courses</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>02</td>
<td>Audit courses</td>
<td></td>
<td>50</td>
<td>50</td>
<td>---</td>
</tr>
<tr>
<td>03</td>
<td>Studio Courses (Product Design Engg)</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>03</td>
<td>Laboratory (Practical) courses</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>04</td>
<td>Seminar / Min Project/ Project Stage 1</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>---</td>
</tr>
<tr>
<td>05</td>
<td>Field Training</td>
<td></td>
<td></td>
<td>50</td>
<td>---</td>
</tr>
<tr>
<td>06</td>
<td>Project Stage II</td>
<td></td>
<td></td>
<td>50</td>
<td>---</td>
</tr>
</tbody>
</table>

Semester- V

Theory

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>BTCVC 501</td>
<td>Design of Steel Structures</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>02</td>
<td>BTCVC 502</td>
<td>Structural Mechanics-II</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>03</td>
<td>BTCVC 503</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>1</td>
<td>✓</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>04</td>
<td>BTCVC 504</td>
<td>Environmental Engineering</td>
<td>2</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>05</td>
<td>BTCVC 505</td>
<td>Transportation Engineering</td>
<td>2</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>06</td>
<td>CV E2</td>
<td>Elective II</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>07</td>
<td>BTHM3507</td>
<td>Essence of Indian Traditional Knowledge</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>AU</td>
</tr>
</tbody>
</table>

Practical / Drawing and/or Design

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>BTCVL508</td>
<td>Soil Mechanics Laboratory</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>BTCVL509</td>
<td>Environmental Engineering Laboratory</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>BTCVL510</td>
<td>Transportation Engineering Laboratory</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>BTCVL511</td>
<td>Seminar on Topic of Field Visit to works related to Building Services</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>AU</td>
</tr>
</tbody>
</table>

Sub-Total 15 4 7

Total 26 3 1

Elective II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTCVE506A</td>
<td>Materials, Testing & Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>BTCVE506B</td>
<td>Computer Aided Drawing</td>
<td></td>
</tr>
<tr>
<td>BTCVE506C</td>
<td>Development Engineering</td>
<td></td>
</tr>
<tr>
<td>BTCVE506D</td>
<td>Business Communication & Presentation Skills</td>
<td></td>
</tr>
</tbody>
</table>
Students should register for the CVF 705 in Semester VI to undergo training during vacation after semester VI and appear at examination in Semester VII. Result shall appear in Grade-sheet of Semester VII.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Contact hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>01</td>
<td>BTCVC601</td>
<td>Design of Concrete Structures I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>BTCVC602</td>
<td>Foundation Engineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>BTCVC603</td>
<td>Concrete Technology</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>04</td>
<td>BTCVC604</td>
<td>Project Management</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>CVE3</td>
<td>Elective III</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>06</td>
<td>BTCVC606</td>
<td>Building Planning and Design</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical / Drawing and/or Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>BTCVL607</td>
<td>Concrete Technology Laboratory</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08</td>
<td>BTCVL608</td>
<td>Building Planning, Design and Drawing Laboratory</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>09</td>
<td>BTCVL609</td>
<td>Community Project (Mini Project)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>BTCVL610</td>
<td>Seminar on Topic of Field Visit Road Construction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>BTCVL611</td>
<td>Industrial Training$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sub-Total 14 3 11

Total 28 19

Elective III

- BTCVE605A: Air Pollution Control
- BTCVE605B: Operations Research
- BTCVE605C: Geographic Data Analysis and Applications
- BTCVE605D: Advanced Engineering Geology
- BTCVE605E: Advanced Soil Mechanics
Detailed Syllabus

Semester- V

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>BTCVC 501</td>
<td>Design of Steel Structures</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>02</td>
<td>BTCVC 502</td>
<td>Structural Mechanics-II</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>03</td>
<td>BTCVC 503</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>1</td>
<td>✓</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>04</td>
<td>BTCVC 504</td>
<td>Environmental Engineering</td>
<td>2</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>05</td>
<td>BTCVC 505</td>
<td>Transportation Engineering</td>
<td>2</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>06</td>
<td>CV E2</td>
<td>Elective II</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>07</td>
<td>BTHM3507</td>
<td>Essence of Indian Traditional Knowledge</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>AU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical / Drawing and/or Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>BTCVL508</td>
<td>Soil Mechanics Laboratory</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>BTCVL509</td>
<td>Environmental Engineering Laboratory</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>BTCVL510</td>
<td>Transportation Engineering Laboratory</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>BTCVL511</td>
<td>Seminar on Topic of Field Visit to works related to Building Services</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>AU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>15</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Elective II
- BTCVE506A: Materials, Testing & Evaluation
- BTCVE506B: Computer Aided Drawing
- BTCVE506C: Development Engineering
- BTCVE506D: Business Communication & Presentation Skills

BTCVC 501 Design of Steel Structures

Teaching Scheme: (2 Lectures + 2 Tutorial) hours/week

Course Contents

Module 1: Introduction and Connections

(8 Lectures)

Introduction, advantages & disadvantages of steel structures, permissible stresses, factor of safety, methods of design, types of connections, various types of standard rolled sections, types of loads and load combinations.

Types: Riveted, Bolted, Welded; Analysis of axially & eccentrically loaded connections (subjected to bending & torsion).

Permissible Stresses, Design of connections, failure of joints.

Module 2: Axially Loaded Members

(6 Lectures)

Tension members: Common sections, net effective area, load capacity, connection using weld / bolts, design of tension splice.

Compression members: Common sections used, effective length and slenderness ratio, permissible stresses, load carrying capacity, connection using weld / bolt.

Module 3: Beams

(6 Lectures)

Laterally supported & unsupported beams, design of simple beams, built up beams using flange plates, curtailment of flange plates, web buckling & web crippling, secondary and main beam arrangement, beam to beam connections.

Module 4: Industrial Roofing

(6 Lectures)

Gantry girder: Forces acting on a gantry girder, commonly used sections, design of gantry girder as laterally unsupported.
beam, connection details
Roof trusses: Components of an industrial shed, types of trusses, load calculations and combinations, design of purlins, design of truss members, design of hinge & roller supports

Module 5: Columns and Column Bases (8 Lectures)

Simple and built up section, lacing, battening, column subjected to axial force and bending moment, column splices.
Column bases: Analysis and design of: Slab base, gusseted base and moment resisting bases, grillage foundation, design of anchor bolt

Module 6: (4 Lectures)

Note: Contents in Module 1 to part of 6 shall be taught with help of relevant text or reference books based on elastic design concept, IS 800: 1984. Use of IS 800: 1984 and 2007, IS 875 (All Parts), IS: Handbook No.1 for Steel Section and Steel Table is permitted for theory examination.

Text Books
- Subramanian N., “Steel Structures: Design and Practice” Oxford Univ. Press, Delhi

Reference Books
- Arya A. S. and Ajamani J.L., “Design of Steel Structures”, Nemchand and Brothers, Roorkee
- Publications of Bureau of Indian Standards, New Delhi, IS 800:1984, 2007, IS 875 (Part I to V)
- Salmon and Johnson, “Steel Structures: Design and Behaviour”, Harper and Row, New York
- Steel Designers Manual.

Course Outcomes: On completion of the course, the students will be able to:
- CO1: Identify and compute the design loads and the stresses developed in the steel member.
- CO2: Analyze and design the various connections and identify the potential failure modes.
- CO3: Analyze and design various tension, compression and flexural members.
- CO4: Understand provisions in relevant BIS Codes.
BTCVC 502 Structural Mechanics-II

Teaching Scheme: (2 Lectures + 1 Tutorial) hours/week

Course Contents

Application of All methods shall be restricted to beams, Frames and/or pin jointed frames or trusses of Degree of Indeterminacy up to three

Module 1: Analysis of trusses (6 Lectures)
Analysis of determinate and indeterminate pin jointed trusses by energy method, effects of settlement and pre-strains

Module 2: Moving Loads and Influence Lines (6 Lectures)
Introduction to moving loads, concept of equivalent UDL, absolute maximum bending moment and shear force, concept of influence lines, influence lines for reaction, shear force, bending and deflection of determinate beams, influence line diagram (ILD) for forces in determinate frames and trusses, analysis for different types of moving loads, single concentrated load, several concentrated loads, uniformly distributed load shorter and longer than span, application of Muller Breslau principle for determinate structures to construct ILD

Module 3: Cables, Suspension Bridges and Arches (6 Lectures)
Analysis of forces in cables, suspension bridges with three hinged and two hinged stiffening girders, theory of arches, Eddy’s theorem, circular, parabolic and geometric arches, concept of radial shear force and axial thrust, analysis of three hinged and two hinged arches, effect of yielding of supports, rib shortening and temperature changes. ILD for 3 hinged arches and suspension bridges

Module 4: Analysis of Indeterminate Structures by direct Flexibility Method (6 Lectures)
Fundamental concepts of flexibility method of analysis, flexibility coefficients and their use in formulation of compatibility equations, application of above methods to propped cantilevers, fixed beams, continuous beams, simple pin jointed frames including effect of lack of members, rigid jointed frames.

Module 5: Analysis of Indeterminate Structures by direct Stiffness Method (6 Lectures)
Fundamental concepts of stiffness method of analysis, stiffness coefficients for prismatic members and their use for formulation of equilibrium equation, applications of the above methods to indeterminate beams and simple rigid jointed frames, rigid jointed frames with inclined member but having only one translational DoF in addition to rotational DoFs, including the effect of settlement of supports, pin jointed frames.

Module 6: Finite Element Method (Contents to conceptual level) (6 Lectures)
Introduction to analysis by discretization such as finite difference method, Finite element method: types of elements-1D, 2D, 3D, Plane Strain and Plane Stress Problem, isoperimetric and axisymmetric, convergence criteria, Pascal's triangle, direct stiffness method, principle of minimum potential energy. Shape functions, concept of local and global stiffness matrix

Text Books
- Thadani B. N. and Desai J. P., “Structural Analysis”
- Punmia B.C., “Structural Analysis”, Laxmi Publications
Reference Books
- Beaufait, F. W., “Basic Concepts of Structural Analysis”, Prentice Hall, N.J.
- Kanchi M. B., “Matrix Methods of Structural Analysis”, Wiley Eastern Ltd., N. Delhi

Course Outcomes: On completion of the course, the students will be able to:
CO1: Have a basic understanding of matrix method of analysis and will be able to analyze the determinant structure.
CO2: Have a basic understanding of the principles and concepts related to finite difference and finite element methods
CO3: Have a basic understanding of concept of influence line
BTCVC 503 Soil Mechanics

Teaching Scheme: (3 Lectures + 1 Tutorial) hours/week

Course Contents

Module 1: Introduction (2 Lectures)
Definition of soil and soil engineering. Application areas of soil mechanics, Three Phase system, Soil moisture, Soil minerals, Soil structure, Terzaghi’s effective stress concept, Effective and neutral pressure

Module 2: Soil Consistency (10 Lectures)
Index properties of soil: Different unit weights of soil, and their determination, unit weight of solids, unit weights of soil mass, method for determination of field density viz. sand replacement and core cutter. Specific Gravity determination methods void ratio and porosity, degree of saturation, Inter relation between weight volume state, density indexes, Atterberg’s limits and their significance, Soil Classification: Soil classification based on particle size and consistency, I.S. classification system

Module 3: Flow of Water Through Soil: Permeability (6 Lectures)
Head, gradient and potential, Darcy’s law, Factors affecting permeability, Field and Laboratory methods of determining permeability, Seepage pressure, quick sand condition, Derivation of Laplace equation, Flow net: characteristics & application, construction of flow net, piping phenomenon, Permeability through stratified soil, Discharge and seepage velocity.

Module 4: Shear Strength (8 Lectures)
Concept of shear, Coulomb’s theory and failure envelope, Principle stress, stress analysis (Total stress approach and effective stress approach), representation of stresses on Mohr’s circle for different types of soil such as cohesive and cohesionless, saturated and partly saturated soil etc. Application of shear stress parameters in the field, Different types of shear tests: Unconsolidated undrained, Consolidated undrained and consolidated drained choice of the type of test, box shear test, triaxial compression test with pore pressure and volume change measurement, Unconfined compression test, vane shear test

Module 5: Compressibility of Soils (8 Lectures)
Compaction Theory of compaction, factors influencing compaction, compacted density, Laboratory Standard and modified compaction test, Method and measurement of field compaction, Field compaction control

Consolidation
Compressibility: Definition, compressibility of laterally confined soil, compression of sand and clay, e-p and e-log p curve, compression index. Consolidation: Terzaghi’s theory of one dimensional consolidation, consolidation test, determination of coefficient of consolidation, degree of consolidation, relevance of one dimensional consolidation to field condition, time factor

Module 6: Earth Pressure Theories (5 Lectures)
Earth pressure at rest, active and passive conditions, Elementary idea about Rankin’s and Coulomb’s earth pressure. Graphical methods for active earth pressure.

Text Books
- Kasamalkar B. J., “Geotechnical Engineering”, Pune Vidyarthi Griha Prakashan Pune
- Gopal R Rao “Basic Soil Mechanics “

Reference Books
- Taylor D.W., “Fundamentals of Soil mechanics”
- Terzaghi and Peak “Soil mechanics” John Willey and Sons, New-York
- Scott R. F., “Principal of soil mechanics”
Course Outcomes: On completion of the course, the students will be able to:

CO1: Understand different soil properties and behavior
CO2: Understand stresses in soil and permeability and seepage aspects.
CO3: Develop ability to take up soil design of various foundations.

BTCVC 504 Environmental Engineering

Teaching Scheme: (2 Lectures) hours/week

Course Contents

Module 1: Introduction (4 Lectures)
Environment and its components, importance of water, role of environmental engineer, sources of water, water demand: Design flow, design period, design population, factors affecting water consumption, variation in demand, and design capacity for water supply components, quality of water: Physical, chemical, biological characteristics, Indian standard for quality of potable water

Module 2: Treatment of Water (6 Lectures)
Conveyance of raw water: Canals and pipelines, hydraulics of conduits, laying and jointing of pipelines, testing of pipe lines, designing of rising main, type of valves, types of pumps, intake structure, types of intake structures, necessity of water treatment processes
Types of Treatments:
Aeration: Necessity, methods, removal of taste and odour, design of aeration fountain
Sedimentation: Suspended Solids, settling velocity, types of sedimentation tanks, surface loading, detention time, inlet and outlet arrangements
Coagulation: Necessity, coagulant dosage, choice of coagulants, optimum pH
Rapid Mixing: Necessity, gravitational, mechanical, pneumatic devices
Slow Mixing and Flocculation: Design of flocculation chamber, mean velocity gradient, design of clari-flocculator, plate settler and tube settler
Filtration: Theory of filtration, filter materials, types of filters, components, working and cleaning of filters
Disinfection: Theory of disinfection, factors affecting, efficiency of disinfection, types of disinfectants, break point chlorination, bleaching powder estimation
Water softening methods: Lime-soda, ion exchange method, demineralization

Module 3: System of Water Supply (4 Lectures)
Continuous and intermittent system, type of distribution systems, layouts, methods of supply: gravity, pumping and combination, hydraulic analysis of distribution system

Module 4: Treatment of Waste Water (6 Lectures)
Sources of wastewater flows, components of wastewater flows, wastewater constituents, characteristic of municipal waste water, necessity of treatment of waste water, sewerage systems, concept of sewage, sullage, storm water, introduction of preliminary treatment, primary treatment, secondary treatment, tertiary or advanced treatment fundamentals of anaerobic treatment, sewage and industrial waste of common origin, types, collection and recycling and reuse of waste

Module 5: Treatment of Solid Waste (3 Lectures)
Types, sources, characteristics, ill-effects of improper solid waste management, collection, processing techniques, methods of treatment of solid waste-composting, incineration, pyrolysis and sanitary land filling, biodegradable, non-degradable segregation of solid waste, concept of hazardous waste management, e-waste disposal

Module 6: Air Pollution (3 Lectures)
Definition, sources of air pollution, types air pollutants, atmospheric stability, mixing heights, plume types and meteorological parameters, effects of air pollution, control measures of air pollution
Text Books

Reference Books
- Sharma and Kaur, “Environmental Chemistry”, Goyal Publisher
- Publications by routed organizations such as WHO, NEERI, MERI, MPCB, CWPRS, etc.

Course Outcomes: On completion of the course, the students will be able to:

- CO1: Apply the water treatment concept and methods.
- CO2: Prepare basic process designs of water and wastewater treatment plants.
- CO3: Apply the wastewater treatment concept and methods.
- CO4: Apply the solid waste management concepts.

BTCVC 505 Transportation Engineering

Teaching Scheme: (2 Lectures) hours/week

Course Contents

Module 1: Introduction (4 Lectures)
Importance of various modes of transportation, Highway Engineering, Road Classification, Developments in Road Construction, Highway Planning, Alignment and Surveys,

Module 2: (6 Lectures)
Geometric Design- Cross section elements, Sight distances, Horizontal alignment, Vertical alignment, Intersections, Construction of Pavements, Construction and Maintenance of Drainage, Road Arboriculture

Module 3: (4 Lectures)

Module 4: Traffic Engineering (6 Lectures)
Traffic Characteristics, Speed, Journey Time and Delays, Vehicle Volume Counts, Origin and Destination Studies, Analysis and Interpretation of Survey Data, Traffic Operations, Design of Signals and Rotary intersections, Parking Space Design, Highway Lighting, Planning and Administration, Road Markings, Signs

Road Accidents and Safety: Classification, Causes, Mitigation and Control Measures, Aspects of Safety in Usage of Roads, Type and Design of anti-crash barriers, Introduction to Intelligent Transport Systems (ITS).

Module 5: Pavement Design (6 Lectures)
Module 6: Other modes of Transport
Introduction to Railways, Airways, Waterways, Pipeline Transportation, Classification, Requirements, Comparative Studies

Text Books
- Khanna and Justo, “Highway Engineering”, Nemchand& Bros., Roorkee
- Khanna S.K., “Highway Engineering”,
- Arora N. L., “Transportation Engineering”

Reference Books

Course Outcomes: On completion of the course, the students will be able to:
- Comprehend various types of transportation systems and their history of the development
- Comprehend to various types of pavements
- Design the pavements by considering various aspects associated with traffic safety measures.

Practical: 2 hours / week

BTCVL 508 Soil Mechanics Laboratory

Term work shall consist of performance of at least seven experiments from the following mentioned list of experiments.
1) Specific gravity determination of coarse and fine grained soil
2) Particle size distribution-Mechanical sieve analysis, wet sieve analysis
3) Determination of Attergerg’s consistency limit
4) Permeability- Determination of coefficient of permeability
5) Field density determination
6) Direct shear box test
7) Procter compaction test
8) Tri-axial test
9) Unconfined compression test
10) One dimensional consolidation test
Course Outcomes: On completion of the course, the students will able to:

CO1: Determine different engineering properties of soil.

CO2: Identify and classify soils based on standard geotechnical engineering practices.

CO3: Perform Laboratory oratory compaction and in-place density tests.

CO4: Perform and interpret direct shear tests and estimate shear strength parameters.

BTCVL 509 Environmental Engineering Laboratory

Practical: 2 hours / Week

Practical Work consists of performance of at least six experiments from the List (A) below:

(A) Determination of:
- 1) pH and Alkalinity
- 2) Hardness
- 3) Chlorides
- 4) Chlorine demand and residual chlorine
- 5) Turbidity and optimum dose of alum
- 6) MPN
- 7) Sulphates
- 8) Fluorides and Iron
- 9) Total Solids, Dissolved Solids & Suspended Solids
- 10) Sludge Volume Index (SVI)
- 11) Dissolved Oxygen
- 12) BOD and COD

B) Site Visit to Water Treatment Plant:

A report based on the visit to water treatment plant shall be submitted.

Course Outcomes: On completion of the course, the students will be able to:

CO1: Quantify the pollutant concentration in water, wastewater and ambient air.

CO2: Recommend the degree of treatment required for the water and wastewater.

CO3: Analyze the survival conditions for the microorganism and its growth rate.

BTCVL 510 Transportation Engineering Laboratory

Practical: 2 hours / week

Practical Work consists of all experiments from (a) and at least six performances among the list (b) below and detailed reporting in form of journal and Project Reports. Practical examination shall be based on above.

a) Tests on Aggregates
- 1) Shape Test
- 2) Specific Gravity and Water Absorption Test
- 3) Stripping Value Test
- 4) Soundness Test
- 5) CBR Test on Soil and Aggregates

b) Test on Bituminous Materials
- 6) Penetration Test
- 7) Softening Point Test
- 8) Flash and Fire Point Test
- 9) Ductility Test
- 10) Viscosity Test
- 11) Specific Gravity Test
- 12) Demonstration of Marshall Test
- 13) Pavement design exercise based on flexible pavement consisting of bituminous concrete.
Course Outcomes: On completion of the course, the students will be able to:

- Perform tests on various road construction materials.
- Perform CBR tests on local soils to determine subgrade properties needed for roadways.

BTCVL 511 Seminar on Topic of Field Visit to works related to Building Services

Student shall visit to ongoing construction sites in field to witness and collect necessary information from works of execution of building services such as electrification, plumbing, air-conditioning, acoustics, etc. It is desirable to collect basic information on components, tools and plants, construction equipment, safety precautions, etc. Intention of the work is to introduce the student to the chronological order of execution of works and generate data on vocabulary of terms in field.

BTCVE 506 A Materials, Testing & Evaluation

Course Objectives:
1. To provide an overview to the students about various types of civil engineering materials used in constructions along with their properties.
2. To enable students to know details of various tests to be performed on civil engineering materials to evaluate their quality to know their suitability for use in construction.

Teaching Scheme: (3 Lectures) hours / Week

Course Contents

Module 1: (8 Lectures)
Basic Properties of Materials: importance of materials in civil engineering construction, types of materials such as ceramics, concrete, composites, optical/electronics materials, glass, metals, nano-materials, polymers and plastics, wood and other materials. Some basic properties of materials such as temperature, energy, specific heat, thermal conductivity, coefficient of thermal expansion, mechanical properties of metals, stress, strain modulus of elasticity, stress-strain behavior, elastic and plastic deformations, elastic properties of materials, tensile properties, ductility, resilience and toughness, compressive, shear and torsional deformation, hardness. Variability of material properties.

Module 2: (8 Lectures)
Civil Engineering Materials: introduction to cement and concrete, uses of cement, strength of cement and concrete, sand, coarse aggregates, mortar and grouts, masonry mortars, rendering, cementitious grouts, RCC, clay bricks, calcium silicate bricks, concrete blocks, rubbles, steel, steel grades, mechanical properties of steel, different applications, floor and roofing tiles, slates, timber, strength of timber, Engineered wood products, metals, glass for glazing, glass fibres, glass wool, bituminous materials, binder properties, binder mixtures, asphalt mixture.

Module 3: (4 Lectures)

Module 4: (4 Lectures)
Comparison of Different Materials, Introduction, comparison of strengths of various materials, comparison for environmental impact, health and safety.
Module 5: (6 Lectures)

Module 6: (6 Lectures)
Material Testing, Machines And Equipment Requirements---Necessity of material testing, various testing methods, destructive tests, classification of destructive tests---static, impact and cyclic testing, non-destructive testing—its classification, visual inspection, penetration test, magnetic detection, ultrasonic test, radiography test and spark test. Types of testing machines, UTM and CTM, force and displacement controlled machines, loading frames. Hardness testing machines, fracture tests.

Recommended Books:

References:

Course Outcomes: The required course for emphasis in development engineering will help students

1. To develop skill among students to construct strong and durable structures by applying knowledge of material science.
2. To make the students aware of quality assurance and control in their real life as a professional.

BTCVE 506C Development Engineering

Course Objectives:
The main objectives of the course are:
1. To provide an overview to the students of the various fields within planning, such as community development, urban planning and sustainability, challenges at rural level, rural development.
2. To enable students to develop professional capabilities through field and design work in real world problems in the field of planning and development of urban and rural areas.

Teaching Scheme: (3 Lectures) hours / Week

Course Contents

Module1: (6 Lectures)
Introduction to Development Engineering: need of development engineering, core disciplines and concept, major issues in development; urban development; rural development; socioeconomic development; scientific social research, formulation of research problem, field work and data collection, report drafting.

Module2: (6 Lectures)
Design of Sustainable Communities: Concept and development of sustainable communities; Sustainable design, principles, building regulations, codes and standards - ANSI, ASTM,ASHRAE, approval process; green buildings- green building techniques- energy solutions, site solutions, site solutions, exterior and interior solutions, Certification -BREEAM, GRIHA, NAHB, LEED, IGBC;

Module3: (6 Lectures)
Town / City Planning: Town Planning- history of town planning 111 India, characteristics of city/town, town planning at national, regional and local levels, planning standards, master plan, site layout and development, zoning and density control,
green belt, slum redevelopment; Smart city planning- introduction to city planning, infrastructure elements of smart city planning, dimensions of smart cities - global standards and performance benchmark; smart solutions- e governance, waste management, water management, energy management, urban mobility, citizen services, other services such as tele-medications and education, trade facilitation, skill development; GIS for planning

Module 4:

Planning and Development of Rural Areas: District administration, District Planning, introduction to various sectors of rural areas such as drinking water, waste water treatment, electricity, public transport, irrigation, sanitation and cooking energy; issues and challenges associated with these sectors; People's participation and role in development of rural areas; various schemes and policies floated by state and central government - phases in the schemes; life cycle costing of these schemes.

Module 5:

Geoinformatics for Planning and Development: Introduction to Geoinformatics; Advantages, benefits and limitations; Interdisciplinary applications; Data extraction; use of Geoinformatics for planning, mapping and preparation of layouts.

Module 6:

Development aspects: Urban and Rural: Planning and designing of a model town / city and using AutoCad and/ or GIS. Visit to a village or small town - The project will be carried out in groups. Problem faced by the villagers pertaining to various sectors or existing schemes; define the need, method, tools and techniques for development; deliver technology based solution.

Recommended Books:

References:

- Institute of Town Planners, India, Ministry of Urban Affairs & Employment, Government of India, New Delhi, UDPFI Guidelines, 1996.

Course Outcomes: The required course for emphasis in development engineering will help students

1. To develop multi scaled perspective about decisions in the built environment,
2. To expose the students to the analysis and evaluation of real world problems aiming to bring desired change in the society.
BTCVE 506 D Business Communication & Presentation Skills

Teaching Scheme: (3 Lectures) hours / Week

Course Contents

Module 1: Language for Technical Purpose and Presentation Tools
Technical vocabulary, Sentence structures, Computer Aids, Graphical presentations (03 Lectures)

Module 2: Formal Written Communication
Drafting Letters, e-Mails, Memos, Notices, Circulars, Schedules. (03 Lectures)

Module 3: Project Proposals and Reports
Abstract, Aims, Background & significance, Design & methods, writing a sample proposal, Project Report: Types of reports, Planning a report, Collection & organization of information, Structure & style, Proofreading etc. (06 Lectures)

Module 4: Leadership Skill and Team Building, Working.
Leadership Skills: Leadership quality and styles, Emotional intelligence, Diplomacy and Tact and effective communication, Case studies. Need of team, Effective teams, Group development (06 Lectures)

Module 5: Business Meetings
Understanding role of meetings, planning meetings, developing meeting agendas, scheduling meetings, Taking notes and publishing minutes (06 Lectures)

Module 6: Presentation Skills
Use of presentation tools, Presentation, nonverbal techniques, handling questions (04 Lectures)

References:
Semester- VI

$: Students should register for the CVF 705 in Semester VI to undergo training during vacation after semester VI and appear at examination in Semester VII. Result shall appear in Grade-sheet of Semester VII.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Contact hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>BTCVC601</td>
<td>Design of Concrete Structures I</td>
<td>3 L 1 T - P</td>
<td>3</td>
</tr>
<tr>
<td>02</td>
<td>BTCVC602</td>
<td>Foundation Engineering</td>
<td>2 L 1 T - P</td>
<td>3</td>
</tr>
<tr>
<td>03</td>
<td>BTCVC603</td>
<td>Concrete Technology</td>
<td>2 L - T ✓ P</td>
<td>2</td>
</tr>
<tr>
<td>04</td>
<td>BTCVC604</td>
<td>Project Management</td>
<td>2 L 1 T - P</td>
<td>2</td>
</tr>
<tr>
<td>05</td>
<td>CVE3</td>
<td>Elective III</td>
<td>3 L - T - P</td>
<td>3</td>
</tr>
<tr>
<td>06</td>
<td>BTCVC606</td>
<td>Building Planning and Design</td>
<td>2 L - T ✓ P</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical / Drawing and/or Design

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Contact hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>BTCVL607</td>
<td>Concrete Technology Laboratory</td>
<td>- L - T 2 P</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>BTCVL608</td>
<td>Building Planning, Design and Drawing Laboratory</td>
<td>- L - T 4 P</td>
<td>2</td>
</tr>
<tr>
<td>09</td>
<td>BTCVL609</td>
<td>Community Project (Mini Project)</td>
<td>- L - T 2 P</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>BTCVL610</td>
<td>Seminar on Topic of Field Visit Road Construction</td>
<td>- L - T 1 AU</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>BTCVL611</td>
<td>Industrial Training</td>
<td>- L - T 2 P</td>
<td></td>
</tr>
</tbody>
</table>

Sub-Total 14 L 3 T 11

Total 28 L 19

Elective III

BTCVE605A Waste Water Treatment
BTCVE605B Operations Research
BTCVE605C Geographic Data Analysis and Applications
BTCVE605D Advanced Engineering Geology
BTCVE605E Advanced Soil Mechanics

BTCVC 601 Design of Concrete Structures - I

Teaching Scheme: (2 Lectures + 1 Tutorial) hours/week

Course Contents

Module 1:

Basic Aspects of Structural Design, Introduction to Design Philosophies, Stress Strain behaviour of Materials, Permissible stresses, Comparison of Different Philosophies, Estimation of Loads

Working Stress Method

Module 2:

Stress block parameters, Balanced, under reinforced and over reinforced section: Modes of failure, properties of singly and doubly reinforced rectangular section beams, Analysis and Design of Singly and Doubly Reinforced Beams

One Way and Two Way Slab: Behavior of slabs, types, support conditions, analysis and design with various conditions

Module 3:

Analysis and Design of Axially and Eccentrically Loaded Columns, Isolated Column Footings, Staircases, Design of dog-legged and open well stair case, effective span and load distribution

Limit State Method

Module 4: Introduction to Limit State Approach (5 Lectures)
Introduction to Limit State Approach, Types and Classification of Limit States, Characteristics Strength and Characteristics Load, Load Factor, Partial Safety Factors

Module 5: Limit State of Collapse (Flexure) (7 Lectures)
Limit State of Collapse (Flexure): Analysis and Design of Singly and Doubly Reinforced Rectangular Beam Sections, properties of Flanged (L and T) sections, Analysis and Design of Flanged Beams

Module 6: Limit States of Collapse (Shear and Bond) (7 Lectures)
Limit States of Collapse (Shear and Bond): Shear Failure, Types of Shear Reinforcement, Design of Shear Reinforcement, Bond – Types, Factors Affecting, Resistance, Check for Development Length, detailing of reinforcement

Text Books
- Jain A.K., “Reinforced Concrete Design (Limit State)”, Nemchand Brothers, Roorkee
- Sinha and Roy, “Fundamentals of Reinforced”

Reference Books
- Relevant Publications by Bureau of Indian Standards, New Delhi

Course Outcomes: On completion of the course, the students will be able to:
- Comprehend to the various design philosophies used for design of reinforced concrete.
- Analyze and design the reinforced concrete slab using limit state and working state method.
- Analyze and design the reinforced concrete beam using limit state and working state method.
- Analyze and design the reinforced concrete column using limit state and working state method.

BTCVC 602 Foundation Engineering

Teaching Scheme: (3 Lectures + 1 Tutorial) hours/week

Course Contents

Module 1: (6 Lectures)
Introduction, General requirements to be satisfied for satisfactory performance of foundations, Soil exploration: Necessity, Planning, Exploration Methods, Soil Sampling Disturbed and undisturbed, Rock Drilling and Sampling, Core Barrels, Core Boxes, Core Recovery, Field Tests for Bearing Capacity evaluation, Test Procedure & Limitations

Module 2: (7 Lectures)
Bearing Capacity Analysis - Failure Modes, Terzaghi’s Analysis, Specialization of Terzaghi’s Equations, Skempton Values for Ne, Meyerhofer’s Analysis, I.S. Code Method of Bearing Capacity Evaluation, Effect of Water Table, Eccentricity of load, Safe Bearing Capacity and Allowable Bearing Pressure, Settlement Analysis: Immediate Settlement - Consolidation Settlement, Differential Settlement, Tolerable Settlement, Angular distortion
Module 3:

Module 4:
Shallow Foundations: Assumptions & Limitations of Rigid Design Analysis, Safe Bearing Pressure, Settlement of Footings, Design of Isolated, Combined, Strap Footing (Rigid analysis), Raft Foundation (Elastic Analysis), I. S. Code of Practice for Design of Raft Foundation

Module 5:

Module 6:

Text Books
- Kasamalkar, B.J., “Foundation Engineering”, Pittsburgh vintage Grand Prix
- Punmia B. C., “Soil Mechanics And Foundation Engineering”, Laxmi publication 16th 2017
- Nayak N.V., “Foundation Design Manual”, Dhanpat Rai And Sons

References Books
- Teng W.C., “Foundation Design”, Prentice-Hall Inc
- Lee, “Sheet Piles” Concrete Publication,1961
- Relevant Publications by Bureau of Indian Standards, New Delhi

Course Outcomes: On completion of the course, the students will be able to:
To predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries.
Analyze the stability of slope by theoretical and graphical methods.
Analyze the results of in-situ tests and transform measurements and associated uncertainties into relevant design parameters.
Synthesize the concepts of allowable stress design, appropriate factors of safety, margin of safety, and reliability.
Teaching Scheme: (2 Lectures) hours/week

Course Contents

Module 1
Materials for Concrete: Cement, Manufacturing Process, Physical Properties, Hydration of Cement, hydration products, Chemical Compounds in Cement, Types of Cement, Aggregates: Classification of aggregates, Physical Properties, Bulk of Sand, Mechanical Properties, Water: Specifications of Water to be used For Concrete

Module 2
Properties of Fresh Concrete -Types of Batching, Mixing, Transportation, Placing Including Pumping and Compaction Techniques for Good Quality Concrete, Workability, Factors affecting workability, Methods of Measuring Workability, Segregation and Bleeding, setting time, Curing of Concrete, Types of curing, Temperature Effects on Fresh Concrete

Module 3
Admixtures In Concrete: Types, Plasticizers and Super-plasticizers and their Effects On Workability, Air Entraining Agents, Accelerators, Retarders, Pozzolanic Admixtures, Green concrete, Bonding Admixtures, Damp-Proofing Admixtures, Construction Chemicals

Module 4
Desired Properties of Concrete, Strength, Durability & Im-permeability, Characteristic Strength, Compressive, Tensile and Flexure of Concrete, Bond Strength, Tests on Concrete, Modulus of Elasticity, Effect of W/C Ratio and admixtures on Strength, Types of concrete, High Strength and High Performance Concrete

Module 5
Creep and Shrinkage of Concrete, Significance, Types of Shrinkage and Their Control, Factors Affecting Creep. Durability of Concrete: Minimum & Maximum Cement Content, Strength & Durability Relationship, Exposure to Different Conditions, Factors Contributing to Cracks in Concrete, Sulphate Attack, Alkali Aggregate Reaction (AAR), factors affecting on AAR, Deteriorating effects of AAR, Chloride Attack, Corrosion of Steel (Chloride Induced)

Module 6
Concrete Mix Design, Nominal Mix Concrete, Factors Governing Mix Design, Methods Of Expressing Proportions, Trial Mixes, Acceptance Criteria, Factors Causing Variations, Field Control, Statistical Quality Control, Quality Measurement in Concrete Construction, Non-destructive Testing of Concrete

Text Books
- Shetty M. S. “Concrete Technology”, S. Chand 2005.
- Krishnaswamy, “Concrete Technology”, Dhanapat Rai and Sons

Reference Books
- Orchard, “Concrete Technology”, Applied Science Publishers
- Neville A. M., “Concrete Technology”, Pearson Education
- Neville A. M., “Properties of Concrete”, Pearson Education
- Relevant Publications by Bureau of Indian Standards, New Delhi

Course Outcomes: On completion of the course, the students will be able to:
CO1: Understand the various types and properties of ingredients of concrete.
CO2: Understand effect of admixtures on the behavior of the fresh and hardened concrete.
CO3: Formulate concrete design mix for various grades of concrete.
BTCVC 604 Project Management

Teaching Scheme: (2 Lectures +1 Tutorial) hours/week

Course Contents

Module 1: (6 Lectures)
Introduction, Steps in Project Management, fundamentals of material, machinery and manpower management in Project, Bar Chart, Mile stone chart, Development of network, Fulkerson’s Rule, Introduction to CPM, Time estimates, floats, critical path

Module 2: (4 Lectures)
Network Compression, Least Cost and Optimum Duration, Resource Allocation, Updating Calculations for Updated Network

Module 3: (4 Lectures)
Introduction to PERT, concept of probability, normal and beta distribution, central limit theorem, time estimates, critical path, slack, probability of project completion

Module 4: (5 Lectures)
Introduction to engineering economics, importance, demand and supply, types of costs, types of interests, value of money – time and equivalence, tangible and intangible factors, introduction to inflation, cash – flow diagram, economic comparisons – discontinuing methods, non-discontinuing criteria

Module 5: (5 Lectures)
Linear break even analysis – problems, quality control – concept, statistical methods – control charts

Module 6: (5 Lectures)
Total quality management– philosophy of Juran, Deming, importance, Quality Circle implementation, introduction to ISO 9000 series and 14000 series, Introduction to Computer Aided Project Management

Text Books
- Naik B. M. “Project Management”,Stosius Inc./Advent Book division
- Khanna O.P., “Work Study”, Dhanpatrai publication
- Srinath L. S. “CPM PERT”, Affiliated East-West Press (Pvt) ltd

Reference Books

Course Outcomes: On completion of the course, the students will be able to:

- Understand various steps in project Management, different types of charts.
- Construct network by using CPM and PERT method.
- Determine the optimum duration of project with the help of various time estimates.
- Know the concept of engineering economics, economic comparisons, and linear break even analysis problems.
- Understand the concept of total quality Management including Juran and Deming's philosophy.
Course Contents

Planning of Buildings

Module 1: (6 Lectures)
Principles of building planning, significance sun diagram, wind diagram, orientation, factors affecting, and criteria under Indian condition, concept of green building: aspect at planning level, construction stage and operational level.

Module 2: (6 Lectures)
Building planning byelaws & regulations as per SP-7, National Building Code of India group 1 to 5, planning of residential building: bungalows, row bungalows, apartments and twin bungalows, procedure of building permission, significance of commencement, plinth completion or occupancy certificate

Module 3: (6 Lectures)
Traditional constructions using stone, brick, timber, bamboo, mud, lime, etc. low cost housing - materials & methods (conceptual introduction only), maintenance, repairs, rehabilitation

Building Services

Module 4: Plumbing Systems (10 Lectures)
Various materials for system like stoneware, GI, AC, CI, PVC, HDPE and various types of traps, fittings, chambers, need of septic tank, concept of plumbing & drainage plan, introduction to rainwater harvesting, concept of rain water gutters, rainwater outlet & down tank systems

Electrification: wiring types, requirements & location of various points, and concept of earthing

Fire resistance in building: Fire protection precautions, confining of fire, fire hazards, characteristics of fire resisting materials, building materials and their resistance to fire

Module 5: Ventilation (10 Lectures)
Definition, necessity of ventilation, functional requirements, various system & selection criteria.

Air conditioning: Purpose, classification, principles, various systems

Thermal Insulation: General concept, Principles, Materials, Methods, Computation of Heat loss & heat gain in Buildings

Module 6: Introduction to Acoustics (10 Lectures)
Absorption of sound, various materials, Sabine’s formula, optimum reverberation time, conditions for good acoustics

Sound insulation: Acceptable noise levels, noise prevention at its source, transmission of noise, Noise control-general considerations

Reference Books
- Sane Y. S., “Building Design and Drawing”, Allied Book Stall, Pune
- SP 7- National Building Code Group 1 to 5- B.I.S. New Delhi
- I.S. 962 – 1989 Code for Practice for Architectural and Building Drawings
Course Outcomes: On completion of the course, the students will be:

- To plan buildings considering various principles of planning and bye laws of governing body.
- Comprehend various utility requirements in buildings
- Understand various techniques for good acoustics.

BTCVL 607 Concrete Technology Laboratory

Practical: 2 Hours / Week

Term work shall consist of performing minimum five experimental sets from the list below.

1) Testing of Cement: Consistency, Fineness, Setting Time, Specific Gravity,
2) Soundness and Strength Test for Cement
3) Testing of Aggregates: Specific Gravity, Sieve Analysis, Bulking of Fine Aggregate,
 Flakiness Index, Elongation Index and Percentage Elongation
4) Placement Tests on Concrete: Workability Tests: Slump, Compaction,
5) Strength Tests on Concrete: Compression, Flexure, Split & Tensile Test,
6) Effects of Admixture: Accelerator, Retarder, Super Plasticizer,
7) Exercise and verification of Concrete Mix Design,
8) Non-destructive Testing for Concrete.

BTCVL 608 Building Planning Design and Drawing Laboratory

Practical: 4 hours / week

Term work shall consist of detailed report of in form of set of drawings mentioned below. In practice sessions, free-hand sketching in drawing book shall be insisted.

1) Imperial size sheets based on actual measurement of existing residential building consisting of plan, elevation, section passing through staircase, Site plan. Area statement & brief specifications.
2) Planning & design of a building (Minimum G+1): Full set of drawings for:
 1) Municipal Submission drawing as per local statutory body bye-laws such as Town Planning, Municipal Council or Corporation Authorities.
 2) Foundation / Center Line Drawing.
 3) Furniture layout plan.
 4) Electrification plan.
 5) Water supply & drainage plan.
3) Setting out of planned building actually on ground using conventional or modern surveying instruments

It is desirable to use drawings produced in this submission for carrying out structural design under BTCVL708 and/or BTCVL806 in next semesters. If this is implemented, student shall get extra 10% weightage limited to maximum limit.

Course Outcomes: On completion of the course, the students will be able to:

- Draw plan, elevation and section of load bearing and framed structures.
- Draw plan, elevation and section of public structures.
BTCVL 609 Community Project (Mini Project)

Student shall choose a topic of his interest in consultation with faculty in the department. The topic for community project may be related to Civil Engineering area and/or interdisciplinary area. Student shall attempt to collect necessary information and present a summary indicating comprehension of the topic and acquired depth of knowledge. It is desirable to obtain industry or community sponsorship. Simplified tools or devices may be presented in form of working model and a brief report stating development. A power point presentation shall also be submitted.

BTCVL 610 Seminar on Topic of Field Visit Road Construction

Student shall visit to ongoing construction sites in field to witness and collect information from works of execution of roads. It is desirable to collect basic information on components of roads, construction machinery, etc. Intention of the work is to introduce the student to the sequential order of execution of road works, preparation of road alignment and various surveys.

BTCVL 611 Industrial Training

Students are expected to undergo industrial training for at least four weeks at factory / construction site / design offices or in combination of these. Training session shall be guided and certified by qualified engineer / architect / contractor in civil engineering. A neat detailed report on activities carried out during training is expected. Students should undergo training in Summer Vacation after Semester VI and appear at examination in Semester VII.

Elective III

BTCVE 605 A Waste Water Treatments

Teaching Scheme: (3 Lectures) hours/week
Pre Requisites: Environmental Engineering

Course Contents

Module 1: Wastewater Treatment (5 Lectures)
Introduction of wastewater, its types and various sources, Concept of sewage, sullage and storm water, Necessity of treatment of waste water
Preliminary treatment: screening and grit removal units, oil and grease removal, Primary treatment,
Secondary treatment: Activated sludge process, trickling filter, sludge digestion, drying bed. Stabilization pond, septic tank, soakage system, Imhoff Tank, recent trends and advanced wastewater treatment: nutrient removal, solids removal

Module 2: Low cost wastewater treatment methods (7 Lectures)

Module 3: Industrial Waste Water Treatment Management (6 Lectures)
Sources of Pollution: Physical, Chemical, Organic and Biological properties of Industrial Wastes – Differences between industrial and municipal waste waters – Effects of industrial effluents on sewers and treatment plants, Prevention vs Control of Industrial Pollution
Pre and Primary Treatment: Equalization, Proportioning, Neutralization, Oil Separation by Floatation, Prevention v/s Control of Industrial Pollution

Module 4: Waste Water Treatment Methods

Common Effluent Treatment Plants (CETPs): Need, Planning, Design, Operation & Maintenance Problems

Module 5: Environmental Sanitation
Communicable diseases, Methods of communication, Diseases communicated by discharges of intestines, nose and throat, other communicable diseases and their control

Insects and Rodent Control-Mosquitoes, life cycles, factors of diseases control methods - natural &chemical, Fly control methods and fly breeding prevention, Rodents and public health, plague control methods, engineering and bio-control methods

Module 6: Rural Sanitation
Rural areas, Population habits and environmental conditions, problems of water supply and sanitation aspects, low cost excreta disposal systems, Rural sanitation improvement schemes

Text Books
- Manual on sewerage and sewage Treatment-Government of India Publication
- Masters G.M., “Introduction to Environmental Engineering and Science”
- Rao M.N.&Datta, Waste water treatment
- Ehalers Victor & Earnest W Steel, Municipal and Rural sanitation

Reference Books
- Bhatia H. S., Environmental Pollution and Control, Galgotia Publication Pvt. Ltd., New Delhi

Course Outcomes: On completion of the course, the students will be able to:
- Determine the sewage characteristics and design various sewage treatment plants.
- Understand municipal water and wastewater treatment system design and operation.
- Apply environmental treatment technologies and design processes for treatment of industrial waste water.
- Understand the rural sanitation schemes.

BTCVE 605 C Geographic Data Analysis and Applications

Teaching Scheme: (3 Lectures) hours / Week

Pre Requisites: Mathematics - I and Mathematics – II

Course Contents

Module 1: (6 Lectures)
Basic concepts of GIS- Information systems, spatial and non-spatial information, geographical concepts and terminology, advantages of GIS, basic components of GIS, commercially available GIS hardware and software, organization of data in GIS.
Module 2: (6 Lectures)
GIS data - Field data, statistical data, Maps, aerial photographs, satellite data, points, lines and areas features, vector and raster data, advantages and disadvantages, data entry through keyboard, digitizers and scanners, digital data, preprocessing of data rectification and registration, interpolation techniques.

Module 3: (6 Lectures)
Data management - DBMS, various data models, run-length encoding, quadtrees, data analysis-data layers, analysis of spatial and non-spatial data, data overlay and modeling, data processing: raster based and vector based, data presentation – hardcopy devices, softcopy devices.

Module 4: (6 Lectures)
Remote sensing and GIS integration - Principles of electromagnetic remote sensing, imaging characteristics of remote sensing systems, extraction of metric and descriptive information from remotely sensed images, integration of remote sensing &GIS.

Module 5: (6 Lectures)
Digitizing, Editing and Structuring of map data: Digitizing: manual, semiautomatic and automatic, editing: error detection and correction, tolerances, topology creation, Attribute map generation.

Module 6: (6 Lectures)
Applications of GIS- Map revision, land use, agriculture, forestry, archaeology, municipal geology, water resources, soil erosion, land suitability analysis, change detection

Term Work:
Each student to appear for at least one written test during the semester. At least 10 assignments based on above syllabus and the graded answer paper for the semester test to be submitted.

Text/Reference Books:
5. Sabins F F, “Remote Sensing Principles and Interpretation”
6. Katara Pratibha,“Remote Sensing and GIS Technology”

BTCVE 605 D Advanced Engineering Geology

Teaching Scheme: (3 Lectures) hours/week

Pre Requisites: Engineering Geology

Course Contents

Module 1 (6 Lectures)
Stratigraphy and Indian geology: geological time scale, physiographic divisions of India and their geological, geomorphologic and tectonic characteristics, study of important geological formations of India namely: Vindhyan, Gondwana, and Deccan traps with respect to: distribution, lithology, tectonics, economic importance etc. significance of these studies in civil engineering

Module 2 (6 Lectures)
Sub-surface exploration: Steps in geological studies of project site, engineering consideration of structural features, exploratory drilling, preservation of cores, core logging, graphical representation of core log, limitations of exploratory drilling method, numerical problems on core drilling, introduction to geological map
Sub-surface water: Runoff, fly off and percolation of surface water, juvenile, connate and meteoric water, water table, zones of subsurface water, perched water table, aquifer theory

Module 3 (8 Lectures)
Engineering geology of Deccan traps: Types of basalts and associated volcanic rocks, engineering characteristics, infillings of gas cavities, compact and amygdaloidal basalt as construction material, effect of jointing, hydrothermal alteration and weathering on engineering behaviour, tail channel erosion problem in Deccan trap region, suitability for tunnelling, problems due to columnar basalt, dykes, red bole, tachylitic basalt, volcanic breccias and fractures, laterites: origin, occurrence and engineering aspects, ground water bearing capacity of rocks of Deccan trap region, percolation tanks

Module 4 (6 Lectures)
Geology of soil formations: Soil genesis, geological classification of soils, residual and transported soils, soil components, characteristics of soils derived from different types of rocks, nature of alluvium and sand from rivers of Deccan trap region, scarcity of sand

Module 5 (6 Lectures)
Geophysics: Various methods: magnetic, gravitational and electrical resistivity methods, applications of electrical resistivity method using Wenner configuration in civil engineering problems such as: finding thickness of over burden and depth of hard rock, locating the spot for ground water well, seepage of water finding,

Rock mechanics: General principles, engineering properties of rocks and their dependence upon geological characters, in-built stresses in rocks, measurements of these stresses

Module 6 (6 Lectures)
Plate tectonics, seismic zones of world, seismic activity of Deccan trap region, various theories on the origin of the seismic activity of Deccan trap region, prediction of earthquake, earthquake resistant constructions, numerical problems based on seismic data, cause and prediction and preventive measurement of landslide in Deccan trap region.

Text Books

Reference Books

Course Outcomes: On completion of the course, the students will be able to:
1) Understand geological time scale and physiographic division of India and their geological characteristics and different geological formation in India.
2) Perform sub surface exploration and interpret core log.
3) Solve numerical problem based on core drilling and seismic data.
4) Familiar with origin of earthquake, seismic wave and landslide in Deccan trap.
BTCVE 605 E Advanced Soil Mechanics

Teaching Scheme: (3Lectures) hours/week
Pre Requisites: Soil Mechanics

Course Contents

Module 1: Introduction to Clay Minerals (6 Lectures)

Introduction to Clay minerology; Gravity forces, surface forces and their dependency on particle size; Primary and Secondary valence bonds; Structural units of clay minerals; Electrical charges on clay minerals; Structural composition and behavior of the minerals like Kaolinite, Montmorillonite, Illite, Halloysite etc.

Module 2: Stress Distribution in Soil (8 Lectures)

Boussinesq’s equation for point load, vertical pressure under loaded circular area and uniformly loaded rectangular area. Newmark’s method for uniformly distributed loads, preparation and use of Newmark’s chart.

Module 3: Earth work and Earth moving Equipments (4 Lectures)

Planning of Earth work, Earth moving equipment: dozers, scrapers, loader-backhoe, excavators; compaction equipments: static and drum rollers, vibratory rollers, sheep-foot rollers, pneumatic tyre rollers, small compactors; selection of equipments.

Module 4: Ground Improvement and Modifications (6 Lectures)

Improvement by excavating and replacing, mixing additives, applications, in-situ ground improvement- compaction piles, compaction with dynamics loads, pre-loading using sand drains, grouting, replacing existing soils with stronger soil in bore hole, response of sands and clays to externally applied stress, impact compaction of sands, vibratory compaction in sands, types of drains.

Module 5: Reinforced Soils (6 Lectures)

Soil reinforcement and its applications, Mechanism of soil reinforcement; Geosynthetics: Introduction; Geotextile, Geojute, Geomembrane, Geogrid, Applications of Geosynthetics in Civil Engineering, testing of geotextile, using Geogrids as a reinforcements, design with geo-synthetics.

Module 6: Grouting and injection methods (6 Lectures)

Principles, design methods, selection of methods and requirements. Aspects of grouts, types of grouts and chemical applications, seepage control, solidification and stabilization – equipment and accessories used – quality control – specifications for achieving satisfactory results.

Text Books

Reference Books

- Taylor D.W., “Fundamentals of Soil mechanics”
- Terzaghi and Peak “Soil mechanics” John Willey and Sons, New-York
Course Outcomes: On completion of the course, the students will be able to:

CO1: Behavior of soil based on its particle size and mineral content
CO2: Ability to understand the Earth work equipment
CO3: Ability to understand the necessity of ground improvement and potential of a ground for improvement
CO4: Understand the soil reinforcement mechanisms
CO5: Understand the grouting and injection methods.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Contact hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>01</td>
<td>BTCVC 701</td>
<td>Design of Concrete Structures II</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>BTCVC 702</td>
<td>Infrastructure Engineering</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>03</td>
<td>BTCVC 703</td>
<td>Water Resources Engineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>04</td>
<td>BTCVC 704</td>
<td>Professional Practices</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>CVE4</td>
<td>Elective IV</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>06</td>
<td>CVE5</td>
<td>Elective V</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Practical / Drawing and/or Design

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Contact hours</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>07</td>
<td>BTCVL707</td>
<td>Professional Practices Laboratory</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08</td>
<td>BTCVL708</td>
<td>Structural Design & Drawing of Steel Structures</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>09</td>
<td>BTCVL709</td>
<td>Project Stage-I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>BTCVL710</td>
<td>Industrial Training</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sub-Total 15 3 08
Total 26 2

Elective IV

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTCVE705A</td>
<td>Plastic Analysis and Design</td>
</tr>
<tr>
<td>BTCVE705B</td>
<td>Machine Foundations</td>
</tr>
<tr>
<td>BTCVE705C</td>
<td>Modern Surveying Techniques</td>
</tr>
<tr>
<td>BTCVE705D</td>
<td>Engineering Economics</td>
</tr>
<tr>
<td>BTCVE705E</td>
<td>Ground Improvement Techniques</td>
</tr>
</tbody>
</table>

Elective V

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTCVE706A</td>
<td>Advanced Structural Mechanics</td>
</tr>
<tr>
<td>BTCVE706B</td>
<td>Town and Urban Planning</td>
</tr>
<tr>
<td>BTCVE706C</td>
<td>Construction Economics & Finance</td>
</tr>
<tr>
<td>BTCVE706D</td>
<td>Intelligent Transportation Systems</td>
</tr>
</tbody>
</table>
BTCVC 701 Design of Concrete Structures II

Teaching Scheme: (2 Lectures + 1 Tutorial) hours/week

Course Contents

Limit State Method for RC Structures

Module 1: (6 Lectures)
Limit State of Collapse (Torsion) - Types of torsion, behavior of R.C. rectangular sections subjected to torsion, Design of sections subjected to combined bending and Torsion

Module 2: (6 Lectures)
Analysis and design of axially and eccentrically loaded short columns (Circular and Rectangular), detailing of reinforcement, and construction of Interaction diagrams for uni-axial bending, concept of bi-axial bending

Prestressed Concrete

Module 3: (5 Lectures)
Introduction to prestressed concrete, concepts, types, systems and methods of prestressing.

Module 4: (5 Lectures)
Stress analysis for rectangular and symmetrical I sections, Pressure Line, Cable Profiles

Module 5: (4 Lectures)
Losses in Prestressing for Pre-tensioned & Post tensioned members

Module 6: (4 Lectures)
Design of Rectangular and Symmetrical I sections, Design of End Block

Text Books

- IS: 456, IS 1343, SP16, SP24, SP34 of Recent Editions, Bureau of Indian Standards, New Delhi
- Lin T.Y., “Prestressed Concrete”, John Willey & Sons New York
- Jain A.K., “Reinforced Concrete Design (Limit State)”, Nemchand Brothers, Roorkee
- Sinha & Roy, “Prestressed Concrete”, S. Chand & Co. New Delhi
- Krishnaraju N., “Prestressed Concrete”, Tata Mc-Graw Hill

Reference Books

- Relevant Publications by Bureau of Indian Standards, New Delhi
- Indian Standard codes related with nondestructive testing, Government Resolutions related to Structural Audits (BMC Act, etc.), Field manuals and reports by Expert Consultants.

Course Outcomes: On completion of the course, the students will be:

- Able to identify the behavior, analyze and design of the beam sections subjected to torsion.
- Able to analyze and design of axially and eccentrically loaded column and construct the interaction diagram for them.
- Understand various concepts, systems and losses in pre-stressing.
- Able to analyze and design the rectangular and symmetrical I-section pre-stressed beam/girders.
BTCVC 702 Infrastructure Engineering

Teaching Scheme: (3 Lectures) hours/week

Course Contents

Module 1: (5 Lectures)
Railway Engineering: Permanent Way, gauges, rails, sleepers, ballast, subgrade formation, fixtures and fastenings, Geometric Design of tracks- Horizontal Alignment, Vertical Alignment

Module 2: (5 Lectures)
Points and Crossings: Standard types, Design of simple turnout, various types of Junctions, Stations and Yards: Purpose, Location, Site selection, general layouts of Terminus and Junction, Signaling and Interlocking, Construction and Maintenance of Track, Modern trends in Railways

Module 3: (5 Lectures)
Tunnel Engineering: Shape and Size of Tunnel Shafts, Pilot Tunnels, Tunneling in Hard Rock, Tunneling in Soft Materials, Drilling-Patterns, Blasting, Timbering, Mucking, Tunnel Lining, Advances In Tunneling Methods, Safety Measures, Ventilation, Lighting and Drainage of Tunnels

Module 4: (6 Lectures)
Dock and Harbor Engineering: Inland Water Transport in India, Tides, Winds and Waves Erosion, Transport of Sediments, Beach Drift, Littoral Drift, Sand Bars, Coast Protection, Classification of Ports and Harbors, Site Selection, Features of Break Waters, Jetties, Wharves, Piers, Facilities required, Dry Docks, Wet Docks, Lift Docks, Floating Docks, Spillways, Navigational Aids, Lighthouses, Terminal Buildings, and Dredging- Special Equipments

Module 5: (6 Lectures)

Module 6: (5 Lectures)

Text Books
- Saxena and Arora, “A Course in Railway Engineering,” Dhanpat Rai & Sons Delhi
- Arora N. L., “Transportation Engineering”, IPH New Delhi
- Bindra S. P., “Bridge Engineering”, Dhanpatrai and Sons
References
Publications of Bureau of Indian Standards, New Delhi, Relevant To the Syllabus
- Cormick H. F., “Dock and Harbour Engineering” Giffin Publisher
- Horonjeff, “Planning and Design of Airports”, Fifth edition

Course Outcomes: On completion of the course, the students will be able to:

- Know about the basics and design of various components of railway engineering
- Understand the types and functions of tracks, junctions and railway stations.
- Know about the aircraft characteristics, planning and components of airport
- Understand the types and components of docks and harbors.

BTCVC 703 Water Resources Engineering

Teaching Scheme: (2 Lectures + 1 Tutorial hours/week)

Course Contents

Module 1: Introduction (6 Lectures)
Introduction, definition, scope, necessity, ill-effects of irrigation, advantages, types of irrigation systems, difference between weir, barrage and dam, methods of distribution of water, development of irrigation in India

Introduction to hydrology: hydrologic cycle, rain, surface and ground water

Module 2: Reservoirs and Dams (6 Lectures)
Planning of Reservoirs: Classification of Reservoir, Selection of site for Reservoir, Investigation works for Reservoir, Yield and Capacity of Reservoir, Mass Curve and Demand Curve, Storage Calculations, Control Levels, Useful Life of Reservoir, Silting of Reservoirs, Losses in Reservoirs
Gravity Dams – Estimation of Loading, Design Criteria, Causes of Failure of Gravity Dam, Precaution against Failure, Theoretical and Practical Profile, Stability Calculations, Galleries, Joints, Earth Dams: Components and their Functions, Design Criterion, Inverted Filters, Downstream Drainage, Causes of Failure of Earthen Dam. Arch Dams – Types, Forces on Arch Dam,

Module 3: Spillway Weirs and Canals (8 Lectures)
Spillway, Necessity and Different Types, Location of Spill Ways, Selection Criterion, Gates For Spillways,
Weirs on Permeable Foundations: Theories of Seepage, Bligh’s Creep Theory, Limitations of Bligh’s Creep Theory, Khosla’s Theory, Piping and Undercutting,
Canals: Types, Alignment, Kennedy’s and Lacey’s Silt Theories, Canal Losses, Typical Canal Sections, Canal Lining :
Necessity and Types, Canal Structures: Cross Drainage Works and Canal Regulatory Works

Module 4: Lift Irrigation (6 Lectures)
Lift irrigation, wells and tube wells, introduction, classification of well, specific yield, deep and shallow wells, comparative advantage of well and canal irrigation, duty of well water, types of tube wells, types of strainers, boring methods. Darcy’s law, permeability, safe yield of basin.
Lift irrigation schemes: Various components and their design principles (Only concepts)

Module 5: Hydrology (6 Lectures)
Hydrology, measurement of rainfall, peak flow, base flow, precipitation and its measurement, average depth of precipitation, water losses, flood frequency, catchment area formulae, flood hydrograph, rainfall analysis, infiltration, run off, estimation of runoff, unit hydrograph and its determination, s- hydrograph

Module 6: Water logging and drainage (6 Lectures)
Causes of water logging, preventive and curative measures, drainage of irrigation of lands, reclamation of water logged, alkaline and saline lands, Preventive and Curative Measures

Water Conservation: Rain water Harvesting, Ground Water Recharge, small scale techniques of surface water detention such as: Soil embankments, field ponds, concrete bandhara

Text Books
- Bharat Singh, “Irrigation”, Nemchand Brothers, Roorkee

References Books
- USBR, “Design of Small Dam”, OXFORD & IBH, Publishing Company
- C B I & P “River Behaviour, Management and Training”

Course Outcomes
On completion of the course, the students will be able to:

CO1: Understand need of Irrigation in India and water requirement as per farming practice in India.

CO2: Understand various irrigation structures and schemes.

CO3: Develop basis for design of irrigation schemes.

BTCVC 704 Professional Practices

Teaching Scheme: (2 Lectures + 1 Tutorial) hours/week

Pre Requisites: Building Construction

Course Contents

Module 1: Quantity Surveying (4 Lectures)
Introduction to estimating, purpose, types, items of inclusion, modes of measurement for different works, administrative approval and technical sanction to estimates, specifications: purpose general and detailed specifications for various items of work, prime cost, provisional sums and provisional quantities, taking out quantity, P.W.D. method, recording of measurements

Module 2: Costing (6 Lectures)
Analysis of rates for various items of construction of civil engineering works, standard schedule of rate, price escalation, detailed and approximate estimates for buildings, R.C.C works, culverts, earthwork for canals, roads including hill roads and other civil engineering works

Module 3: Tendering (6 Lectures)
Types, preparation of tender papers, conditions of contracts, competitive bidding, types of bids, invitation of tenders, scrutiny
and acceptance of tenders, award of jobs, introduction to B.O.T. and similar other basis of execution.

Module 4: Contracts (4 Lectures)
Essentials of legally valid contract, types and forms of contract between various agencies, organizational set up of P.W.D. classification of works, method of carrying out work in P.W.D. mode of payment, bill forms, introduction to arbitration

Module 5: Valuation (4 Lectures)
Principles, types, price and cost, attributes of value, valuer and his duties, factors affecting the valuation of properties, methods of valuation, different types of lease

Module 6: (6 Lectures)
Valuation from yield and from life, gross yield and net yield, sinking fund, depreciation, different methods of calculating depreciation, depreciated cost, obsolescence

Text Books

References
- Govt. of Maharashtra P.W.and Housing DepartmentPublication edition 1979 and 1981
- C.P.W.D. Specifications
- C.P.W.D. Schedule of Rates
- P.W.D. Maharashtra Schedule of Rates
- Publications of Bureau of Indian Standards: IS 1200 all parts, and other relevant

Course Outcomes: On completion of the course, the students will be able to:

Understand the importance of preparing the types of estimates under different conditions for various structures.
Know about the rate analysis and bill preparations and to study about the specification writing.
Know the various types of contract, accounts in PWD, methods for initiating the works in PWD and tendering.
Understand the valuation of land and buildings, various methods and factors affecting valuation.

Elective IV
BTCVE 705 A Plastic Analysis and Design

Teaching Scheme: (3 Lectures) hours/week

Course Contents

Module 1: (5 Lectures)
Plasticity in ductile materials, stress-strain for mild steel, elasto-plastic behavior of beam in flexure, shape factor for different cross sections, yield zones, concept of plastic hinge

Module 2: (7 Lectures)
Collapse loads of determinate and indeterminate structures such as beams and rectangular portal frames, statical and
kinematical methods, mechanisms, bending moment diagram at collapse

Module 3: (7 Lectures)
Philosophy of Limit State design, requirement of steel for design, Limit State of Strength and Serviceability, partial safety factors, design of laterally supported beams, shear resistance

Module 4: (6 Lectures)
Secondary design considerations, design of beams with high shear, interaction of bending and shear, interaction of bending and axial force

Module 5: (6 Lectures)
Design of portal frames, design of corner connection with and without haunches

Module 6: (5 Lectures)
Consideration of deformations, calculation of deflections for plastically deformed structures

Text Books
- Bureau of Indian Standards, “IS: 800 Code of Practice for General Construction in Steel”
- Arya A.S. and Ajmani J.L., “Design of Steel Structures”, Nemchand & Bros., Roorkee
- Beedle L.S., “Plastic Design of Steel Frames”, John Wiley & Sons

References
- Bureau of Indian Standards, “Handbook for Structural Engineers SP 6”
- INSDAG Kolkata, “Teaching Resource for Structural Steel Design”
- “Steel Designers Manual” ELBS

Course Outcomes: On completion of the course, the students will be able to:

- Understand modes of structural collapse
- Perform the plastic analysis and design of various determinant and in-determinant structures.

Elective V

BTCVE 706 B Town and Urban Planning

Teaching Scheme: Lectures: 4 Hours / Week

Course Contents

Module 1: Necessity and scope of Town Planning, Brief history, Greek and Roman Towns, Planning in ancient India - Indus Valley Civilization, Vedic Period, Buddhist Period, Medieval Period, Mogul Period, British Period, Post-Independence Period, Theories in urban and regional planning

Module 2: Town Planners in Modern Era such as Sir Patrick Geddes, Sir Ebenezer Howard, Clarence stein, Sir Patrick Abercrombie, Le Corbusier, Present Status of Town Planning in India, Efficiency Measures, Planners skills, Integrated Area Planning in India. Distribution and sizes of Settlements

Module 3: Layout of Residential Units, Neighborhood Unit Planning, Radburn Plan, Grid Iron Pattern, Shoe String Development, Growth Pattern of Towns, Concentric Satellite, Ribbon Development, Scattered growth
Module 4: Elements of Town, Various Zones, Development Control Rules and Building Bye Laws, Urban Roads: Objective, Classification, Road Networks, Data Collection Surveys, Analysis of data,

Town aesthetics, Landscape Architecture, Suitability of Trees, Treatment of Traffic Islands, Open Spaces Walkways Public Sit-outs, Continuous Park System, Green ways

Module 5: Town Planning works with reference to M.R.T.P. Act, Land Acquisition Act, Necessity and procedure of acquisition

Text Books
- Gandhi N.K., “Town and Country Planning”,
- Hiraskar G.K., “Town and country Planning”
- MRTP Act 1966
- Land Acquisition Act - 1894

Reference Books
- Lewis Kuble, “Town and Country Planning”
- Gallion, “The Urban Pattern”, Eisner

BTCVL 707 Professional Practices Laboratory

Practical: 2 Hours / Week

Term work include detailed study and working of following set of assignments

1) Detailed estimate for a two storied RCC or load bearing wall building

2) Preparing detailed estimate for any four of the following:
 a) A small culvert
 b) A stretch of a road about 1 Km. long including earthwork
 c) A reach of canal about 1 Km. long
 d) A percolation tank
 e) A factory shed of steel frame
 f) Water supply scheme
 g) Drainage scheme
 h) Water Treatment plants.

3) Valuation report including valuation certificate for any one of the following:
 a) A building for residential purpose or commercial purpose
 b) A hotel
 c) A theatre
 d) Any one construction machine.

4) Drafting of Detailed specification for any five civil engineering items. This shall include at least one item each from Roads, Irrigation works, Water Supply, Sanitation and buildings

Assignment (1) and (2) shall include Rate Analysis of at least two items.
Practical: 4 Hours / Week Term Work: 50 Marks

Term work shall consist of detailed analytical report for structural design and drawing of any one of the following steel structures:

1) Industrial Shed: Roof Truss with Necessary Bracing System, Purlins, Column and Column Bases
2) Industrial Shed: With Portal or Gable Frames of Solid or Open Web Sections with Necessary Bracing System, Purlins, Column and Column Bases
3) Industrial Shed: Gantry Girder, Columns with Necessary Bracing System, Purlins, Column and Column Bases
4) Foot Bridge: Analysis using Influence lines for Main Truss, Cross Beams, Raker, Joint Details
5) Plate Girder: Analysis and Design of Rivetted or Welded Plate Girder.
7) G+1 Building Structure

Course Outcomes: On completion of the course, student will be able to simulate a practical design requirement in to a theoretical statement to solve mathematically to arrive at a safe economical and realistic feasible solution that can be executed.

BTCVL 709 Project Phase I

Term work shall consist of detailed report for chosen topic and final working proposed in next semester. Report shall summarise the literature survey, spell out the scope of work, proposed methodology and expected results. It is desirable to have a topic sponsored by Industry or research organization or community.

BTCVL 710 Industrial Training

Students are expected to undergo industrial training for at least four weeks at factory / construction site / design offices or in combination of these. Training session shall be guided and certified by qualified engineer / architect / contractor in civil engineering. A neat detailed report on activities carried out during training is expected. Students should undergo training in Summer Vacation after Semester VI and appear at examination in Semester VII.