COURSE STRUCTURE AND SYLLABUS

For

B. Tech. Electronics and Telecommunication Engineering Programme

With effect from the Academic Year

2017–2018 (First Year), 2018–2019 (Second Year),
2019–2020 (Third Year), 2020–2021 (Final Year).
Curriculum for Semester III [Second Year]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P MSE CA ESE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BTBSC301</td>
<td>Engineering Mathematics-III</td>
<td>3 1 0 20 20 60</td>
<td></td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>BTEXC302</td>
<td>Analog Circuits</td>
<td>2 1 0 20 20 60</td>
<td></td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTEXC303</td>
<td>Electronic Devices & Circuits</td>
<td>2 1 0 20 20 60</td>
<td></td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTEXC304</td>
<td>Network Analysis</td>
<td>2 1 0 20 20 60</td>
<td></td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTEXC305</td>
<td>Digital Logic Design</td>
<td>2 1 0 20 20 60</td>
<td></td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BTHM3401</td>
<td>Basic Human Rights</td>
<td>2 0 0 -- 50 --</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>(Audit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BTEXL307</td>
<td>Analog Circuits Lab</td>
<td>0 0 2 -- 60 40</td>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>BTEXL308</td>
<td>Electronic Devices & Circuits Lab</td>
<td>0 0 2 -- 60 40</td>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>BTEXL309</td>
<td>Network Analysis Lab</td>
<td>0 0 2 -- 60 40</td>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>BTEXL310</td>
<td>Digital Logic Design Lab</td>
<td>0 0 2 -- 60 40</td>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>BTEXW311</td>
<td>Electronics Workshop</td>
<td>0 0 2 -- 60 40</td>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>BTES211P</td>
<td>Field Training/Internship/Industrial Training Evaluation</td>
<td>-- -- -- -- 50</td>
<td></td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13 05 10</td>
<td></td>
<td>100 450 550 1100</td>
<td></td>
<td>550</td>
<td>22</td>
</tr>
</tbody>
</table>
Dr. Babasaheb Ambedkar Technological University, Lonere.

B. Tech (Electronics & Telecommunication Engineering) / B. Tech (Electronics Engineering)

Curriculum for Semester IV [Second Year]

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P MSE CA ESE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BTEXC401</td>
<td>Electrical Machines and Instruments</td>
<td>2</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BTEXC402</td>
<td>Analog Communication Engineering</td>
<td>2</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTEXC403</td>
<td>Microprocessor</td>
<td>2</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTEXC404</td>
<td>Signals and Systems</td>
<td>2</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTID405</td>
<td>Product Design Engineering</td>
<td>1</td>
<td>30 30 40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>BTBSC406</td>
<td>Numerical Methods and Computer Programming</td>
<td>2</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>BTEXL407</td>
<td>Electrical Machines and Instruments Lab</td>
<td>0</td>
<td>-- 60 40</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>BTEXL408</td>
<td>Analog Communication Engineering Lab</td>
<td>0</td>
<td>-- 60 40</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>BTEXL409</td>
<td>Microprocessor Lab</td>
<td>0</td>
<td>-- 60 40</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>BTEXL410</td>
<td>Signals and Systems Lab</td>
<td>0</td>
<td>-- 60 40</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>BTHML411</td>
<td>Soft-Skill Development</td>
<td>0</td>
<td>-- 60 40</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>
Dr. Babasaheb Ambedkar Technological University, Lonere.

<table>
<thead>
<tr>
<th>12</th>
<th>BTEXF412</th>
<th>Field Training/Internship/Industrial Training (Minimum 4 weeks which can be completed partially in third semester or fourth semester or in at one time)</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>11</td>
<td>05</td>
<td>12</td>
<td>130</td>
<td>430</td>
</tr>
</tbody>
</table>

1* (To be evaluated in Vth Semester)
B. Tech (Electronics & Telecommunication Engineering)

Proposed Curriculum for Semester V [Third Year]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTEXC501</td>
<td>Professional Core Course 1</td>
<td>Electromagnetic Field Theory</td>
<td>2 1 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BTEXC502</td>
<td>Professional Core Course 2</td>
<td>Control System Engineering</td>
<td>3 0 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTETC503</td>
<td>Professional Core Course 3</td>
<td>Computer Architecture</td>
<td>3 0 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTEXC504</td>
<td>Professional Core Course 4</td>
<td>Digital Signal Processing</td>
<td>2 1 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTEXC505</td>
<td>Professional Core Course 5</td>
<td>Microcontroller and its Applications</td>
<td>3 0 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BTEXPE506A</td>
<td>Program Elective Course 1</td>
<td>Probability Theory and Random Processes</td>
<td>3 0 0</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BTEXPE506B</td>
<td></td>
<td>NSQF (Level 7 Course)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEXPE506C</td>
<td></td>
<td>Data Structure & Algorithms Using Java Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTEXPE506D</td>
<td></td>
<td>Introduction to MEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Theory</td>
<td>Practicals</td>
<td>Total</td>
<td>Exam Marks</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>7</td>
<td>BTETL507</td>
<td>Control System Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>BTETL508</td>
<td>Digital Signal Processing Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>BTETL509</td>
<td>Microcontroller and its Applications Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>BTETP510</td>
<td>Mini Project</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>BTETS511</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>BTEXF412</td>
<td>Field Training/ Internship/Industrial Training Evaluation</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
</tbody>
</table>

Total | 16 | 02 | 10 | 120 | 270 | 510 | 900 | 24 |
Bachelor of Technology Degree Course in Electronics and Telecommunication Engineering

Proposed Curriculum for Semester VI [Third Year]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Professional Core Course 1</td>
<td>Antennas and Wave Propagation</td>
<td>3 L 0 T 0 P</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>BTETC601</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Core Course 2</td>
<td>Computer Network & Cloud Computing</td>
<td>3 L 0 T 0 P</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BTETC602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Core Course 3</td>
<td>Digital Image Processing</td>
<td>3 L 0 T 0 P</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTETC603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program Elective Course 2</td>
<td>CMOS Design</td>
<td>3 L 0 T 0 P</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTETPE604A</td>
<td></td>
<td>Information Theory and Coding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETPE604B</td>
<td></td>
<td>Power Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETPE604C</td>
<td></td>
<td>Nano Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETPE604D</td>
<td></td>
<td>NSQF (Level 7 Course)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETPE604E</td>
<td></td>
<td>Android Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETPE604F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Elective Course 1</td>
<td>Digital System Design</td>
<td>3 L 0 T 0 P</td>
<td>MSE 20 CA 20 ESE 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTETOE605A</td>
<td></td>
<td>Optimization Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETOE605B</td>
<td></td>
<td>Project Management and Operation Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BTETOE605C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Theory</td>
<td>Practical</td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETOE605D</td>
<td>Augmented, Virtual and Mixed Reality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETOE605E</td>
<td>Python Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETOE605F</td>
<td>Web Development and Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTHM606</td>
<td>Humanities & Social Science including Management Courses</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Employability & Skill Development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETL607</td>
<td>Computer Network & Cloud Computing Lab</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETL608</td>
<td>Program Elective 2 Lab</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETL609</td>
<td>Open Elective 1 Lab</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETP610</td>
<td>Mini-project</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTETF611</td>
<td>Field Training/ Internship/ Industrial Training (Minimum 4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>240</td>
<td>440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800</td>
<td>800</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dr. Babasaheb Ambedkar Technological University, Lonere.

<table>
<thead>
<tr>
<th>Program Elective 2</th>
<th>Open Elective 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) CMOS Design</td>
<td>(A) Digital System Design</td>
</tr>
<tr>
<td>(B) Information Theory and Coding</td>
<td>(B) Optimization Techniques</td>
</tr>
<tr>
<td>(C) Power Electronics</td>
<td>(C) Project Management and Operation Research</td>
</tr>
<tr>
<td>(D) Nano Electronics</td>
<td>(D) Augmented, Virtual and Mixed Reality</td>
</tr>
<tr>
<td>(E) NSQF (Level 7 Course)</td>
<td>(E) Python Programming</td>
</tr>
<tr>
<td>(F) Android Programming</td>
<td>(F) Web Development and Design</td>
</tr>
</tbody>
</table>

* To be evaluated in VIIth Semester
B. Tech (Electronics & Telecommunication Engineering)

Proposed Curriculum for Semester VII [Final Year]

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BTETC701</td>
<td>Professional Core Course 1</td>
<td>Digital Communication</td>
<td>3 0 0</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>BTETPE702</td>
<td>Program Elective 3</td>
<td>Group A</td>
<td>3 0 0</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BTETPE703</td>
<td>Program Elective 4</td>
<td>Group B</td>
<td>3 0 0</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BTETPE704</td>
<td>Program Elective 5</td>
<td>Group C</td>
<td>3 0 0</td>
<td>20 20 60</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>BTHM705</td>
<td>Humanities & Social Science including Management Courses</td>
<td>Financial Management</td>
<td>2 0 0</td>
<td>20 20 60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>BTETL706</td>
<td>Program Elective 3 Lab</td>
<td>--</td>
<td>0 0 2</td>
<td>-- 30 20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>BTETL707</td>
<td>Program Elective 4 Lab</td>
<td>--</td>
<td>0 0 2</td>
<td>-- 30 20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>BTETL708</td>
<td>Program Elective 5 Lab</td>
<td>--</td>
<td>0 0 2</td>
<td>-- 30 20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>BTETP709</td>
<td>Project Part I</td>
<td>--</td>
<td>0 0 8</td>
<td>-- 50 50</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>BTETF611</td>
<td>Field Training/ Internship/Industrial Training Evaluation</td>
<td>--</td>
<td>-- --</td>
<td>-- -- 50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14 0 14</td>
<td>100 240 460</td>
<td>800</td>
<td>22</td>
</tr>
<tr>
<td>Program Elective - 3 (Group A)</td>
<td>Program Elective - 4 (Group B)</td>
<td>Program Elective - 5 (Group C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Microwave Theory & Techniques</td>
<td>(A) Embedded System Design</td>
<td>(A) Consumer Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) RF Circuit Design</td>
<td>(B) Artificial Intelligence Deep learning</td>
<td>(B) Analog Integrated Circuit Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) Satellite Communication</td>
<td>(C) VLSI Design & Technology</td>
<td>(C) Soft Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) Fiber Optic Communication</td>
<td>(D) Data Compression & Encryption</td>
<td>(D) Advance Industrial Automation-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E) Wireless Sensor Networks</td>
<td>(E) Big Data Analytics</td>
<td>(E) Mechatronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F) Mobile Computing</td>
<td>(F) Cyber Security</td>
<td>(F) Electronics in Smart City</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed Curriculum for Semester VIII [Final Year]

(Students doing the Project at Institute Level)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>BTETPE801</td>
<td>Program Elective 6</td>
<td>Group A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>BTETPE802</td>
<td>Program Elective 7</td>
<td>Group B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>BTTOE803</td>
<td>Open Elective 2</td>
<td>Group C</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>BTETL804</td>
<td>Program Elective 6 Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>BTETL805</td>
<td>Program Elective 7 Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>BTETP806</td>
<td>Project Part-II</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>--</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>MSE</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>0</td>
<td>20</td>
<td>60</td>
<td>270</td>
<td>320</td>
<td>650</td>
</tr>
</tbody>
</table>

Total 9 0 20 60 270 320 650 19
OR

B. Tech (Electronics & Telecommunication Engineering)
Proposed Curriculum for Semester VIII [Final Year]
(Students doing the Project at Industry)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>BTETPE801</td>
<td>Program Elective 6</td>
<td>Group A</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>BTETPE802</td>
<td>Program Elective 7</td>
<td>Group B</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>BTETO803</td>
<td>Open Elective 2</td>
<td>Group C</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>BTETP804</td>
<td>Project Part-II</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

* Students should complete the certification credit course using SWAYAM, MOOC, NPTEL, Coursera platform and submit the certificate. University will transfer these credits accordingly.
OR

B. Tech (Electronics & Telecommunication Engineering)
Proposed Curriculum for Semester VIII [Final Year]
(Students doing the In-plant training and completing the Project sponsored / promoted by Industry)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Type of Course</th>
<th>Course Title</th>
<th>Hours Per Week</th>
<th>Evaluation Scheme</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>BTETPE801</td>
<td>Program Elective 6</td>
<td>Group A</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>BTETPE802</td>
<td>Program Elective 7</td>
<td>Group B</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>BTETOE803</td>
<td>Open Elective 2</td>
<td>Group C</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>BTETP804I</td>
<td>In-Plant Training and Project Part-II</td>
<td></td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

Total

* Students should complete the certification course using SWAYAM, MOOC, NPTEL Platform or self-study mode.

Program Elective 6 (Group A)
- (A) Entrepreneurship Development
- (B) Mixed Signal Design
- (C) Bio-medical Signal Processing
- (D) Multirate Digital Signal Processing
- (E) Wavelet Theory

Program Elective 7 (Group B)
- (A) e-Yantra
- (B) Mobile Communication & Networks
- (C) Geo-informatics and Spatial Computing
- (D) Software Defined Radio
- (E) Under Water Signal Processing

Open Elective 2 (Group C)
- (A) Advanced Industrial Automation -2
- (B) IoT based Embedded System Design.
- (C) Industrial Drives and Control
- (D) Robotics Design
- (E) Block Chain Technology
Second Year B. Tech Classes (Common to all Branches) Semester: III

Prerequisites: Differential and Integral Calculus, Taylor series and Infinite series, Differential equations of first order and first degree, Fourier series, Vector algebra, Algebra of complex numbers.

Course Objectives:
After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
3. Vector differentiation and integration required in Electromagnetics and Wave theory.
4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:
On completion of the course, students will be able to:

1. Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
2. Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
4. Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
5. Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.
Laplace Transform
Definition – conditions for existence ; Transforms of elementary functions ; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by t^n, scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives ; Evaluation of integrals by using Laplace transform ; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

Inverse Laplace Transform
Introductory remarks ; Inverse transforms of some elementary functions ; General methods of finding inverse transforms ; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms ; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients.

Fourier Transform
Definitions – integral transforms ; Fourier integral theorem (without proof) ; Fourier sine and cosine integrals ; Complex form of Fourier integrals ; Fourier sine and cosine transforms ; Properties of Fourier transforms ; Parseval’s identity for Fourier Transforms.

Partial Differential Equations and Their Applications
Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange’s linear equations); Method of separation of variables – applications to find solutions of one dimensional heat flow equation \(\left(\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \right) \), and two dimensional heat flow equation (i.e. Laplace equation : \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \)).
Functions of Complex Variables (Differential calculus)
Limit and continuity of \(f(z) \); Derivative of \(f(z) \); Analytic functions; Cauchy-Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Mapping: Translation, magnification and rotation, inversion and reflection, bilinear transformation; Conformal mapping.

Functions of Complex Variables (Integral calculus)
Cauchy’s integral theorem; Cauchy’s integral formula; Residues; Cauchy’s residue theorem (All theorems without proofs).

TEXT BOOKS

3. A Course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.

REFERENCE BOOKS

4. Integral Transforms and Their Engineering Applications by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
Dr. Babasaheb Ambedkar Technological University, Lonere.

GENERAL INSTRUCTIONS

1. The tutorial classes in Engineering Mathematics-III are to be conducted batch wise. Each class should be divided into three batches for the purpose.
2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.
3. The minimum number of assignments should be eight covering all topics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEXC302</td>
<td>Analog Circuits</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:

- To understand characteristics of IC and Op-Amp and identify the internal structure.
- To introduce various manufacturing techniques.
- To study various op-amp parameters and their significance for Op-Amp.
- To learn frequency response, transient response and frequency compensation techniques for Op-Amp.
- To analyze and identify linear and nonlinear applications of Op-Amp.
- To understand functionalities of PLL.

Course Outcomes:

On completion of the course, students will be able to:

1. Understand the characteristics of IC and Op-Amp and identify the internal structure.
2. Understand and identify various manufacturing techniques.
3. Derive and determine various performances based parameters and their significance for Op-Amp.
4. Comply and verify parameters after exciting IC by any stated method.
5. Analyze and identify the closed loop stability considerations and I/O limitations.
6. Analyze and identify linear and nonlinear applications of Op-Amp.
7. Understand and verify results (levels of V & I) with hardware implementation.
8. Implement hardwired circuit to test performance and application for what it is being designed.
9. Understand and apply the functionalities of PLL.

UNIT - 1

OP-AMP Basics
Block diagram of OP-AMP, Differential Amplifier configurations, Differential amplifier analysis for dual-input balanced-output configurations, Need and types of level shifter, current mirror circuits. Feedback topologies: Voltage series and voltage shunt feedback amplifier and its effect on R_i, R_o, bandwidth and voltage gain.

UNIT - 2

Linear Applications of OP-AMP
Inverting and non-inverting amplifier configurations, voltage follower, summing, averaging scaling amplifier, difference amplifier, integrator, differentiator, and instrumentation amplifiers.

UNIT - 3

Non-linear Applications of OP-AMP
Introduction to comparator, characteristics and applications of comparator, Schmitt trigger, clippers and clampers, voltage limiters, square wave generator, triangular wave generator, Need of precision rectifiers, Half wave and Full wave precision rectifiers.

UNIT - 4

Converters using OP-AMP

UNIT - 5

Oscillators
Principle of Oscillators, Barkhausen criterion, Oscillator types: RC oscillators (design of phase shift, Wien bridge etc.), LC oscillators (design of Hartley, Colpitts, Clapp etc.), non-sinusoidal oscillators, and voltage controlled oscillators.
Active filters and PLL
Design guidelines of Active filters: Low pass, high pass, band pass and band stop filters, block diagram of PLL and its function.

TEXT/REFERENCE BOOKS

Prerequisites:
Basic knowledge of Semiconductor Physics.

Course Objectives:
1. To introduce semiconductor devices FET and MOSFET, their characteristics, operations, circuits and applications
2. To introduce concepts of both positive and negative feedback in electronic circuits
3. To analyze and interpret FET and MOSFET circuits for small signal at low and high frequencies
4. To simulate electronics circuits using computer simulation software and verify desired results
5. To study the different types of voltage regulators.

Course Outcomes:
On completion of the course, students will be able to:
1. Comply and verify parameters after exciting devices by any stated method.
2. Implement circuit and test the performance.
3. Analyze small signal model of FET and MOSFET.
4. Explain behavior of FET at low frequency.
5. Design an adjustable voltage regulator circuits.

UNIT - 1

JFET
Introduction to JFET, Types, Construction, Operation, Static Characteristics, Pinch off voltage, FET Volt-Ampere characteristics, FET Configurations (CS/CD/CG) and their Comparison. Biasing of FET (Self).FET as an amplifier and its analysis (CS) and its frequency response, Small signal model, FET as High Impedance circuits

UNIT - 2

MOSFET& its DC Analysis

UNIT - 3

Electronics Amplifiers

UNIT - 4

Oscillators
UNIT - 5
06 Hours

Multivibrators

IC555 Block diagram, Types of Multivibrators: Astable, Monostable and Bistable, Operation of Multivibrators using FETs and IC555. Applications of IC555 in Engineering.

UNIT - 6
06 Hours

Voltage Regulator

Block diagram of an adjustable three terminal positive and negative regulators (317,337) typical connection diagram, current boosting, Low drop out voltage regulators, Introduction to Switch Mode Power supply (SMPS), Block diagram of SMPS, Types of SMPS. Comparison of Linear Power supply and SMPS.

TEXT/REFERENCE BOOKS

BTEXC304
Network Analysis
3 Credits

Course Objectives:

1. To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines.
2. To understand the need of simplification techniques of complicated circuits
3. To learn about the comprehensive insight into the principle techniques available for characterizing circuits, networks and their implementation in practice.
4. To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.
To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes:

On completion of the course, students will be able to:

1. Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.
2. Design passive filters and attenuators theoretically and practically. To apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.
3. Identify issues related to transmission of signals, analyze different RLC networks.
4. Find technology recognition for the benefit of the society.

UNIT - 1 06 Hours

Basic Circuit Analysis and Simplification Techniques

Note: Above circuit analysis, mentioned in this Unit-1, is for AC network only.

UNIT - 2 06 Hours

Frequency Selective Networks

Significance of Quality factor, Series Resonance: Resonating frequency, Reactance curves, Variation of circuit parameters such as impedance, phase angle, voltage and current with frequency; Bandwidth, Selectivity, Magnification factor, Parallel resonance: Resonant frequency, Variation circuit parameters such as admittance, phase angle, voltage and current with frequency; Bandwidth and selectivity. Analysis of parallel resonating circuit with resistance present in both branches (inductive and capacitive branches) and tank circuit, Effect of generator resistance on BW & Selectivity, Comparison and applications of series and parallel resonant circuits.
Electrical Network Parameters and Passive Filters

Steady State and Transient Response
DC and AC response of R-L, R-C and RLC circuits, Analysis of electrical circuits using Laplace Transform.

Two Port Network Parameters and Functions
Terminal characteristics of network: Z, Y, h, ABCD Parameters; Reciprocity and Symmetry conditions, Applications of the parameters. Network functions for one port and two port networks, Pole-zeros of network functions and network stability.

Transmission Line Theory
Types of Transmission lines, Transmission Line Equation, Equivalent circuits, Primary and Secondary line constants, Terminations of transmission lines, VSWR and Reflection Coefficient, Impedance matching, Transmission line measurements using Smith chart.

TEXT/REFERENCE BOOKS

| BTEXC305 | Digital Logic Design | 3 Credits |

Course Objectives:
1. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.
2. To lay the foundation for further studies in areas such as communication, VHDL, computer.

Course Outcomes:
On completion of the course, students will be able to:
1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.
2. Design combinational and sequential circuits.
3. Design and implement hardware circuit to test performance and application.
4. Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.

| UNIT - 1 | 06 Hours |

Combinational Logic Design
Standard representations for logic functions, k map representation of logic functions (SOP and POS forms), minimization of logical functions for min-terms and max-terms (upto 4 variables), don’t care conditions, Design Examples: Arithmetic Circuits, BCD - to - 7 segment decoder, Code converters. Adders and their use as subtractor, look ahead carry, ALU, Digital Comparator, Parity generators/checkers, Design of Multiplexers and De-multiplexers, Decoders.
Sequential Logic Design
1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, Excitation Table for flip flops, Conversion of flip flops. Application of Flip-flops: Registers, Shift registers, Counters (ring counters, twisted ring counters), Sequence Generators, ripple counters, up/down counters, synchronous counters, definitions of lock out, Clock Skew, and Clock jitter.

State Machines
Basic design steps- State diagram, State table, State reduction, State assignment, Mealy and Moore machines representation, Implementation, finite state machine implementation, Sequence detector.

Digital Logic Families
Classification of logic families, Characteristics of digital ICs-Speed of operation, power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements. TTL logic, Operation of TTL NAND gate, active pull up, wired AND, open collector output, unconnected inputs. Tri-State logic. CMOS logic – CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output. Interfacing CMOS and TTL, Comparison table of Characteristics of TTL, CMOS, ECL, RTL, 1L and DCTL

Programmable Logic Devices and Semiconductor Memories
Programmable logic devices: Detail architecture, Study of PROM, PAL, PLA, Designing combinational circuits using PLDs. General Architecture of FPGA and CPLD Semiconductor memories: memory organization and operation, expanding memory size, Classification and characteristics of memories, RAM, ROM, EPROM, EEPROM, NVRAM, SRAM, DRAM.
Introduction to VHDL

Behavioral – data flow, and algorithmic and structural description, lexical elements, data objects types, attributes, operators; VHDL coding examples, combinational circuit design examples in VHDL and simulation.

TEXT/REFERENCE BOOKS

Course Objectives:

1. To work for ensuring that basic human rights are respected everywhere.
2. To cooperate to avoid compromising on human rights for economic or political expediency
3. To recognize democratic institutions as a fundamental human right
4. To work towards the sovereignty and self-determination of entities with historical, cultural and ecological identity.
5. To actively engage with the Government of India and other countries to promote human rights education.
6. To bring diplomatic and commercial pressures on regimes that violates human rights, to ensure that they respect the basic rights of their citizens.
7. To keep the interests of disempowered communities foremost in all dealings with countries in which human rights violations occur.
8. To develop a more distinctive and effective role for the International Court of Justice in the field of human rights
9. To promote a culture for educating the citizenry that cultivation and promotion of human rights culture is the sine qua non for the smooth functioning of the organs of a democratic State and for the kind of development that results into overall development of the society.
10. To train the young men and women for facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture
11. To study the effects of draconian laws and unlawful use of State's machinery and force by the enforcement agencies.

Course Outcomes:

On completion of the course, students will be able to:

1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.
2. Strengthen the respect for human rights and fundamental freedoms.
3. Enable all persons to participate effectively in a free society.
4. Learn about human rights principles, such as the universality, indivisibility, and interdependence of human rights.
5. Learn about regional, national, state, and local law that reinforces international human rights law.
6. Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights.

The Basic Concepts

Individual, Group, Civil Society, State, Equality, Justice, Human Values: - Humanity, Virtues, Compassion.
Dr. Babasaheb Ambedkar Technological University, Lonere.

<table>
<thead>
<tr>
<th>UNIT - 2</th>
<th>06 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Rights and Human Duties</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 3</th>
<th>06 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society, Religion, Culture, and their Inter-Relationship</td>
<td></td>
</tr>
<tr>
<td>Impact of Social Structure on Human behavior, Roll of Socialization in Human Values, Science and Technology, Modernization, Globalization, and Dehumanization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 4</th>
<th>06 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Structure and Social Problems</td>
<td></td>
</tr>
<tr>
<td>Social and Communal Conflicts and Social Harmony, Rural Poverty, Unemployment, Bonded Labour, Migrant workers and Human Rights Violations, Human Rights of mentally and physically challenged</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 5</th>
<th>06 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>State, Individual Liberty, Freedom and Democracy</td>
<td></td>
</tr>
<tr>
<td>The changing of state with special reference to developing countries, Concept of development under development and Social action, need for Collective action in developing societies and methods of Social action, NGOs and Human Rights in India: - Land, Water, Forest issues</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 6</th>
<th>06 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Rights in Indian Constitution and Law</td>
<td></td>
</tr>
<tr>
<td>The constitution of India:</td>
<td></td>
</tr>
<tr>
<td>(i) Preamble</td>
<td></td>
</tr>
<tr>
<td>(ii) Fundamental Rights</td>
<td></td>
</tr>
<tr>
<td>(iii) Directive principles of state policy</td>
<td></td>
</tr>
<tr>
<td>(iv) Fundamental Duties</td>
<td></td>
</tr>
<tr>
<td>(v) Some other provisions</td>
<td></td>
</tr>
</tbody>
</table>
TEXT/REFERENCE BOOKS

2. Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives (Law in India), Oxford India.

BTEXC401 Electrical Machines and Instruments 3 Credits

Course Objectives:
1. Model and Analyze the performance of different types of DC machines
2. Learn the applications of DC generators
3. Analyze the performance of different types of DC motors
4. Analyze the performance of different types of Sensors and Transducers
5. Familiarize with the applications of DC machines
6. To prepare students to perform the analysis of any electromechanical system.
7. To empower students to understand the working of electrical equipment used in everyday life.

Course Outcomes:
On completion of the course, students will be able to:
1. The ability to formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.
2. The skill to analyze the response of any electrical machine.
3. The ability to troubleshoot the operation of an electrical machine.
4. The ability to select a suitable measuring instrument for a given application.
5. The ability to estimate and correct deviations in measurements due to the influence of the instrument and due to the accuracy of the instrument.

DC Machines
DC machines construction, working principle (motor & generator), EMF equation of DC Machine (motor and generator), Types and its characteristics of DC machines (motor and
generator), back emf, starters of dc machine, Speed control of DC motor Breaking of DC motor, applications of DC machines (motor and generator).

UNIT - 2

Induction Motor and Synchronous Motor

Induction Motor: Construction, working principle, types, torque equation, torque slip characteristics, power stages, losses and efficiency, starters speed control, breaking, applications. **Synchronous motor:** Construction, working principle, starting methods, effect of load, hunting, V-curve, synchronous condenser, applications.

UNIT - 3

Special Purpose Machines

Construction, working and application of steeper motor, variable reluctance motor, servo motor, FHP motor, hysteresis, repulsion, linear IM.

UNIT - 4

Sensors and Transducers

Classification selection of transducers strain gauges, LVDT, Temperature transducers, piezoelectric, photosensitive transducers, Hall Effect transducers, proximity devices Digital transducers need of signal conditioning and types, interfacing techniques of transducers with microprocessor and controller.

UNIT - 5

Industrial Measurement and Industrial Applications

Measurement of vibration, electrical telemetry thickness, humidity, thermal conductivity and gas analysis emission computerized tomography, smoke and fire detection, burglar alarm, object counter level measurement, on /off timers, RTC, sound level meter, tachometer, VAW meter.

UNIT - 6

I/O Devices

Recorder X- Y plotters and its applications, optical oscillograph.
Dr. Babasaheb Ambedkar Technological University, Lonere.

TEXT/REFERENCE BOOKS

1. A course in Electrical and Electronic Measurement and Instrumentation" by A. K. Sawhney (Publisher name: Dhanpat Rai & Co.)
2. Electronics Instrumentation by H.S. Kalsi (Publisher McGraw Hill)
3. Electrical Machines by Ashfaqu Husain, Dhanpatrai and publication
11. B. L. Theraja, “Electrical technology” volume 2, S. Chand.

BTEXC402 Analog Communication Engineering 3 Credits

Course Objectives:

1. To introduce the concepts of analog communication systems.
2. To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.
3. To understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase)

Course Outcomes:

On completion of the course, students will be able to:

1. Understand and identify the fundamental concepts and various components of analog communication systems.
2. Understand the concepts of modulation and demodulation techniques.
3. Design circuits to generate modulated and demodulated wave.
4. Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.
5. Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase).
6. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.
7. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

UNIT - 1
06 Hours

Introduction to Communication System
Block schematic of communication system, Simplex and duplex systems, Modes of communication: Broadcast and point to point communication, Necessity of modulation, Classification of modulation, sampling theorem and pulse analog modulation, multiplexing: TDM, FDM.

UNIT - 2
06 Hours

Amplitude Modulation
Introduction, Mathematical analysis and expression for AM, Modulation index, Frequency spectrum and bandwidth of AM, Power calculations, Generation of AM using nonlinear property, Low and high level modulation, Balance Modulator.
Types of AM: DSB-FC, DSB-SC, SSB-SC, ISB and VSB, their generation methods and comparison.

UNIT - 3
06 Hours

Angle Modulation
Introduction, Mathematical analysis of FM and PM, Modulation index for FM and PM, Frequency spectrum and bandwidth of FM, Narrow band and wide band FM, Direct and indirect methods of FM generation, Pre emphasis and de-emphasis, Comparison of AM, FM and PM.
Radio Receivers and Demodulators
Introduction, Performances characteristic of receivers: Sensitivity, Selectivity, Fidelity, Image frequency and IFRR, Tracking and Double spotting, TRF, Super heterodyne receivers, RF amplifier, Local oscillator and mixer, IF amplifier, AGC.

AM and FM Detectors
AM Detectors: Envelop detector and practical diode detector.
FM Detectors: Slope detector, phase discriminator and ratio detector.

Noise
Introduction, Sources of noise, Classification of noise, Noise calculations (thermal noise), SNR, Noise figure, Noise Factor, Noise Temperature.

TEXT/REFERENCE BOOKS
2. Anokh Singh, "Principles of communication engineering" S.Chand
3. Roddy & Coolen, "Electronic communication" PHI

BTEXC403 Microprocessor 3 Credits

Course Objectives:
1. Objective of this course is to introduce to the students the fundamentals of microprocessor.
2. After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.
3. The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.
5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.
6. The students will get acquainted with recent trends in microprocessor like pipelining, cache memory etc.
7. To understand the applications of Microprocessors.
8. To learn interfacing of real world input and output devices.
9. To study various hardware and software tools for developing applications.

Course Outcomes:
1. Learner gains ability to apply knowledge of engineering in designing different case studies.
2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.
3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.
4. Students can identify and formulate control and monitoring systems using microprocessors.
5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.
6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.
7. Learn use of hardware and software tools.
8. Develop interfacing to real world devices.
UNIT - 1 07 Hours

Fundamentals of Microprocessor
Basic 8085 microprocessor architecture and its functional blocks, 8085 microprocessor IC pin outs and signals.

UNIT - 2 07 Hours

Programming with 8085
Assembly Language Programming Basics, Addressing Modes, Instruction set of microprocessor, Instruction timing diagram. Writing, Assembling & Executing Assembly Language Programs.

UNIT - 3 07 Hours

Interrupts
Interrupt structure of 8085 microprocessor, processing of vectored and non-vectored interrupts, latency time and response time; Handling multiple interrupts.

UNIT - 4 07 Hours

Interfacing
Memory Interfacing, Interfacing with 8255 Programmable Peripheral Interface, 8254 Programmable Interval Timer, 8279 Display controller, Interrupt controller 8259.

UNIT - 5 07 Hours

Introduction of 8086 Microprocessor
Detail Architecture of 8086, Addressing Modes, Assembler directives, Co-Processor

TEXT/REFERENCE BOOKS

1. Microprocessor and interfacing 8085, Douglas V Hall, Tata Mc Gram Hill.
2. Microprocessor-Architecture, programming and application with 8085, gaonkar, penram international.

Course Objectives:
1. To understand the mathematical description of continuous and discrete time signals and systems.
2. To classify signals into different categories.
3. To analyze Linear Time Invariant (LTI) systems in time and transform domains.
4. To build basics for understanding of courses such as signal processing, control system and communication.
5. To develop basis of probability and random variables.

Course Outcomes:
On completion of the course, students will be able to:

1. Understand mathematical description and representation of continuous and discrete time signals and systems.
2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.
3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.
4. Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s-domain.
5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

UNIT - 1

Introduction to Signals and Systems

Introduction and Classification of signals: Definition of signal and systems, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power, elementary signals used for testing: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc

Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration
(Accumulator for DT), time scaling, time shifting and time folding, Sampling Theorem and reconstruction of sampled signal, Concept of aliasing, examples on under sampled and over sampled signals.

Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.

UNIT - 2

Time domain representation of LTI System

UNIT - 3

Fourier Series

Fourier series (FS) representation of periodic Continuous Time (CT) signals, Dirichlet condition for existence of Fourier series, FS representation of CT signals using exponential Fourier series, Fourier spectrum representation, properties of Fourier series, Gibbs phenomenon, Discrete Time Fourier Series and its properties.

UNIT - 4

Fourier transform

Fourier Transform (FT) representation of aperiodic CT signals, Dirichlet condition for existence of Fourier transform, evaluation of magnitude and phase response, FT of standard CT signals, FT of standard periodic CT signals, Introduction to Fourier Transform of DT signals, Properties of CTFT and DTFT, Fourier Transform of periodic signals. Concept of sampling and reconstruction in frequency domain, sampling of bandpass signals.

UNIT - 5

Laplace and Z-transform

Definition of Laplace Transform (LT), Limitations of Fourier transform and need of Laplace transform, ROC and its properties, properties of Laplace transform, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, Application of Laplace transforms to the LTI system analysis.
Introduction to Z-transform, and its properties, Inverse Z-transform, different methods of inverse Z-transform, Z-transform for discrete time system LTI analysis.

UNIT - 6 06 Hours

Probability and Random Signals
Probability: Experiment, sample space, event, probability, conditional probability and statistical independence, Bayes theorem, Random variables: Continuous and Discrete random variables, cumulative distributive function, Probability density function, properties of CDF and PDF. Definitions: Statistical averages, mean, moments and expectations, standard deviation and variance, Introduction to Correlation: Autocorrelation, Cross correlation, and their properties.

TEXT/REFERENCE BOOKS
8. NPTEL video lectures on Signals and Systems.

BTID405 Product Design Engineering 2 Credits

<table>
<thead>
<tr>
<th>Teaching Scheme:</th>
<th>Examination Scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture-cum-demonstration: 1 hr/week</td>
<td>Continuous Assessment 1: 30 Marks</td>
</tr>
<tr>
<td>Design Studio: 2 hr/week</td>
<td>Continuous Assessment 2: 30 Marks</td>
</tr>
<tr>
<td></td>
<td>Final Assessment: 40 Marks</td>
</tr>
</tbody>
</table>
Dr. Babasaheb Ambedkar Technological University, Lonere.

- Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing
- Design Studio: 2 hr/week to develop design sketching and practical skills, learning digital tools
- Continuous Assessment: Progress through a product design and documentation of steps in the selected product design
- Final Assessment: Product Design in Studio with final product specifications

Course Outcomes: At the end of the course, students will be able to

1. Create simple mechanical or other designs
2. Create design documents for knowledge sharing
3. Manage own work to meet design requirements
4. Work effectively with colleagues.

<table>
<thead>
<tr>
<th>UNIT - 1</th>
<th>04 Hours</th>
</tr>
</thead>
</table>

Introduction to Engineering Product Design:

Trigger for Product/ Process/ System, Problem solving approach for Product Design, Disassembling existing Product(s) and understanding relationship of components with each other, Sketching of components, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering concept, case studies of products in markets, (or in each discipline), underlying principles, Case studies of product failures, revival of failed products, Public/Society’s perception of products, and its input into product design.

<table>
<thead>
<tr>
<th>UNIT - 2</th>
<th>04 Hours</th>
</tr>
</thead>
</table>

Ideation:

Generation of ideas, Funnelling of ideas, Short-listing of ideas for product(s) as an individual or group of individuals, Sketching of products, Market research for need, competitions, scale and cost, Initial specifications of products.
Conceptualisation:

Computer operation principles and image editing through a graphical Composition; Computer aided 2D drafting and 3D Modeling through simple exercises.

Designing of components, Drawings of parts and synthesis of a product from its component parts, Rendering the designs for 3-D visualization and to create a photo realistic image, Parametric modelling of product, 3-D Visualization of mechanical products, Detail Engineering drawings of components.

Detailing:

Managing assembling, Product specifications- data Sheet, Simple mechanical designs, Workshop safety and health issues, Create documents for knowledge sharing

Hands-on Activity Charts for Use of Digital Tools

Activity 1	Learn the basic vector sketching tools.	2
Activity 2	General understanding of shading for adding depth to objects. Understanding of editing vectors	2
Activity 3	Begin developing a thought process for using digital sketching.	3
Activity 4	Create a basic shape objects sphere, box cylinders	3
Activity 5	Create Automotive wheel concepts	3
Activity 6	Understanding Navigation and Data Panel Interface	2
Activity 7 | Solid and Surface modelling, Rendering 3-D models | 4
Activity 8 | Product market and Product Specification Sheet | 3
Activity 9 | Documentation for the product | 2

TEXT/REFERENCE BOOKS

1. Model Curriculum for “Product Design Engineer – Mechanical”, NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)

BTBSC406 Numerical Methods and Computer Programming 3 Credits

Course Objectives:
1. To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes.
2. To understand different numerical techniques used for solving algebraic and transcendental equations.
3. To understand numerical methods to solve a system of linear equations.
4. To understand numerical integration and differentiation techniques.
5. To understand various difference operators and interpolation techniques.
6. To understand object-oriented programming fundamentals and features.
7. To mold students professionally by course contents and sufficient problem solving and programming exercises and to acquaint them with different types of numerical techniques and programming concepts.

Course Outcomes:

On completion of the course, students will be able to:

1. Able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem.
2. Able to solve a system of linear equations with any number of variables using different direct and iterative numerical techniques.
3. Understand the concept of interpolation, finite difference operators and their relations, and can apply different interpolation techniques on equi-spaced or non equi-spaced data values.
4. Prepare them to write computer programs for the numerical computational techniques.
5. Understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.
6. Understand procedure-oriented and object oriented programming concepts.
7. Capable of writing C and C++ programs efficiently.

UNIT - 1 06 Hours

Introduction to Computational Methods and Errors

Computational Methods: General principles of computational techniques, Introduction, common ideas and concepts of computational methods, various computational techniques. Errors: Types and sources of errors, Concept in error estimation, Error propagation, Error due to floating point, Representation of errors, Elementary uses of series in calculation of errors.

UNIT - 2 06 Hours

Solution of Transcendental / Polynomial Equations and System of Linear Equation

Solution of Transcendental / Polynomial Equations: Finding root of polynomial equations deploying computational methods such as Bisection, Regula-falsi, Newton-Raphson, Seccant,
Successive approximation. System of linear equation: Solving linear equations deploying computational methods such as Gauss elimination, Gauss Jordan, Partial pivoting, Matrix triangularisation (LU decomposition), Cholesky, Gauss Seidel and Jacobi methods.

UNIT - 3

Interpolation and Polynomial Approximation

Least square approximation, Orthogonal polynomials Chebyshev polynomials, Finite difference operator and their relations, Forward, backward, central and divided difference, Newton's forward divided difference, Backward difference interpolation, Sterling interpolation, Lagrange's interpolation polynomials, Spline interpolation, Least square approximation.

UNIT - 4

Numerical Integration and Differentiation

UNIT - 5

Object Oriented Programming

Software Evaluation, Object oriented programming paradigm, Basic concepts of object oriented programming, Benefits of OOP, Object oriented languages, Applications of OOP Beginning with C++: Structure of C++ program, Creating the source file, Compiling & linking, Basic data types, User defined data types, Symbolic constants, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++, Scope resolution operator, Type cast operator. Functions in C++: Function prototyping, Inline functions, Function overloading, Friend and virtual functions. Classes and Objects: Specifying a class, Defining member functions, C++ program with class, Arrays within a class, Memory allocation for objects, Constructors, Multiple constructor in class, Dynamic initialization of objects, Dynamic constructor, Destructors.

UNIT - 6

Operator Overloading and Type Conversions

Defining operator overloading, Overloading unary operators, Overloading binary operators, Manipulation of strings operators, Rules for overloading operators. Inheritance: Extending
Classes: Defining derived classes, Single inheritance, multilevel inheritance, multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Member classes: Nesting of classes Pointers Virtual Functions and Polymorphism: Pointers to objects, Pointers to derived classes, Virtual functions, pure virtual functions Managing Console I/O Operations C++ Streams, C++ Stream Classes, Unformatted I/O Operations, Managing output with manipulators.

TEXT/REFERENCE BOOKS

4. D. Ravichandran, "Programming with C++", TMH
Course Objectives:
- Learners can be able to explore their knowledge in the area of EM Waves and its analysis.
- To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM Waves.
- To understand the boundary conditions for different materials /surfaces.
- To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.
- To get the basics of microwave, transmission lines and antenna parameters.
- Students get acquainted with different physical laws and theorems and provide basic platform for upcoming communication technologies.

Course Outcomes:
At the end of this course students will demonstrate the ability to
1. Understand characteristics and wave propagation on high frequency transmission lines
2. Carryout impedance transformation on TL
3. Use sections of transmission line sections for realizing circuit elements
4. Characterize uniform plane wave
5. Calculate reflection and transmission of waves at media interface
6. Analyze wave propagation on metallic waveguides in modal form
7. Understand principle of radiation and radiation characteristics of an antenna

UNIT - 1

Maxwell’s Equations
Basics of Vectors, Vector calculus, Basic laws of Electromagnetics, Maxwell's Equations, Boundary conditions at Media Interface

UNIT - 2

Uniform Plane Wave
Uniform plane wave, Propagation of wave, Wave polarization, Poincare’s Sphere, Wave propagation in conducting medium, phase and group velocity, Power flow and Poynting vector, Surface current and power loss in a conductor.
Dr. Babasaheb Ambedkar Technological University, Lonere.

UNIT - 3

Transmission Lines
Equations of Voltage and Current on TX line, Propagation constant and characteristic impedance, and reflection coefficient and VSWR, Impedance Transformation on Loss-less and Low loss Transmission line, Power transfer on TX line, Smith Chart, Admittance Smith Chart, Applications of transmission lines: Impedance Matching, use transmission line sections as circuit elements.

UNIT - 4

Plane Waves at a Media Interface
Plane wave in arbitrary direction, Reflection and refraction at dielectric interface, Total internal reflection, wave polarization at media interface, Reflection from a conducting boundary.

UNIT - 5

Wave propagation
Wave propagation in parallel plane waveguide, Analysis of waveguide general approach, Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation in waveguide

UNIT - 6

Radiation
Solution for potential function, Radiation from the Hertz dipole, Power radiated by hertz dipole, Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna

TEXT/REFERENCE BOOKS

| BTEXC502 | Control System Engineering | 3 Credits |

Course Objectives:
- To introduce the elements of control system and their modeling using various Techniques.
- To introduce methods for analyzing the time response, the frequency response and the stability of systems.
- To introduce the concept of root locus, Bode plots, Nyquist plots.
- To introduce the state variable analysis method.
- To introduce concepts of PID controllers and digital and control systems.
- To introduce concepts programmable logic controller.

Course Outcomes:
At the end of this course, students will demonstrate the ability to
1. Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.
2. Understand the concept of stability and its assessment for linear-time invariant systems.
3. Design simple feedback controllers.

Introduction to control problem
Industrial Control examples, Mathematical models of physical systems, Control hardware and their models, Transfer function models of linear time-invariant systems.
UNIT - 2

Time Response Analysis

UNIT - 3

Stability Analysis
Concept of Stability, Routh-Hurwitz Criteria, Relative Stability analysis, Root-Locus technique. Construction of Root-loci, Dominant Poles, Application of Root Locus Diagram,

UNIT - 4

Frequency-response analysis

UNIT - 5

Introduction to Controller Design
Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems, Application of Proportional, Integral and Derivative Controllers, Designing of Lag and Lead Compensator using Root Locus and Bode Plot.

UNIT - 6

State variable Analysis

TEXT/REFERENCE BOOKS

Dr. Babasaheb Ambedkar Technological University, Lonere.

| BTETC503 | Computer Architecture | 3 Credits |

Course Objectives:

- To introduce basic concepts of computer organization and to illustrate the computer organization concepts by Assembly Language programming.
- To understand operating systems and how they work with the computer and students will understand the relationship between hardware and software specifically how machine organization impacts the efficiency of applications written in a high-level language.
- Students will be able to make use of the binary number system to translate values between the binary and decimal number systems, to perform basic arithmetic operations and to construct machine code instructions and students will be able to design and implement solutions for basic programs using assembly language.
- Students will be able to design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, the ALU, a register file, and memory cells and to explain the fetch-execute cycle performed by the CPU and how the various components of the data path are used in this process.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. learn how computers work
2. know basic principles of computer’s working
3. analyze the performance of computers
4. know how computers are designed and built
5. Understand issues affecting modern processors (caches, pipelines etc.).

UNIT - 1

Basics of Computers
Basic Structure of Computers, Functional units, software, performance issues software, machine instructions and programs, Types of instructions, Instruction sets: Instruction formats, Assembly language, Stacks, Queues, Subroutines.

UNIT - 2

Processor organization
Processor organization, Information representation, number formats.

UNIT - 3

ALU design
Multiplication & division, ALU design, Floating Point arithmetic, IEEE 754 floating point formats Control Design, Instruction sequencing, Interpretation, Hard wired control - Design methods, and CPU control unit.

UNIT - 4

Memory organization
Memory organization, device characteristics, RAMS, ROM, Memory management, Concept of Cache & associative memories, Virtual memory.

UNIT - 5

System organization
System organization, Input - Output systems, Interrupt, DMA, Standard I/O interfaces.

UNIT - 6

Parallel processing
Concept of parallel processing, Pipelining, Forms of parallel processing, interconnect network.

TEXT/REFERENCE BOOKS

3. Y.Chu, "Computer Organization and Microprogramming”, II, Englewood Chiffs, N.J.,
Course Objectives:
- To introduce students with transforms for analysis of discrete time signals and systems.
- To understand the digital signal processing, sampling and aliasing.
- To use and understand implementation of digital filters.
- To understand concept of sampling rate conversion and DSP processor architecture.

Course Outcomes:
After successfully completing the course students will be able to
1. Understand use of different transforms and analyze the discrete time signals and systems.
2. Realize the use of LTI filters for filtering different real world signals.
3. Capable of calibrating and resolving different frequencies existing in any signal.
4. Design and implement multistage sampling rate converter.
5. Design of different types of digital filters for various applications.

UNIT - 1

DSP Preliminaries
Discrete time signals: Sequences; representation of signals on orthogonal basis; Sampling and reconstruction of signals, Basic elements of DSP and its requirements, advantages of Digital over Analog signal processing.

UNIT - 2

Discrete Fourier Transform
DTFT, Definition, Frequency domain sampling, DFT, Properties of DFT, circular convolution, linear convolution, Computation of linear convolution using circular convolution, FFT, decimation in time and decimation in frequency using Radix-2 FFT algorithm
UNIT - 3

Z transform
Need for transform, relation between Laplace transform and Z transform, between Fourier transform and Z transform, Properties of ROC and properties of Z transform, Relation between pole locations and time domain behavior, causality and stability considerations for LTI systems, Inverse Z transform, Power series method, partial fraction expansion method, Solution of difference equations.

UNIT - 4

IIR Filter Design
Concept of analog filter design (required for digital filter design), Design of IIR filters from analog filters, IIR filter design by impulse invariance method, Bilinear transformation method. Characteristics of Butterworth filters, Chebyshev filters, Butterworth filter design, IIR filter realization using direct form, cascade form and parallel form, Lowpass, High pass, Bandpass and Bandstop filters design using spectral transformation (Design of all filters using Lowpass filter)

UNIT - 5

FIR Filter Design
Ideal filter requirements, Gibbs phenomenon, windowing techniques, characteristics and comparison of different window functions, Design of linear phase FIR filter using windows and frequency sampling method. FIR filters realization using direct form, cascade form and lattice form.

UNIT - 6

Introduction to Multirate signal processing
Concept of Multirate DSP, Introduction to Up sampler, Down sampler and two channel filter bank, Application of Multirate signal processing in communication, Music processing, Image processing and Radar signal processing.

TEXT/REFERENCE BOOKS
Dr. Babasaheb Ambedkar Technological University, Lonere.

| BTEXC505 | Microcontroller and its Applications | 3 Credits |

Course Objectives:

- Objective of this course is to introduce to the students the fundamentals of microcontroller.
- After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.
- The learner can microcontroller design based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
- The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.
- The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.
- The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.
- To understand the applications of Microcontrollers.
- To understand need of microcontrollers in embedded system.
- To understand architecture and features of typical Microcontroller.
- To learn interfacing of real world input and output devices.
- To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Graduates will be able to design real time controllers using microcontroller based system.
4. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.
5. Students can identify and formulate control and monitoring systems using microcontrollers.
6. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.
7. Learners get acquainted with modern tools like Programmers, Debuggers, cross compilers and current IDE i.e. integrated development environment tools.
8. Learn importance of microcontroller in designing embedded application.
9. Learn use of hardware and software tools.
10. Develop interfacing to real world devices.

Fundamentals of Microcontrollers
Introduction to the general structure of 8 and 16 bit Microcontrollers Harward & Von Neumann architecture, RISC & CISC processors, Role of microcontroller in embedded system, Selection criteria of microcontroller Block diagram and explanation of 8051, Port structure, memory organization, Interrupt structure, timers and its modes, serial communication modes. Overview of Instruction set, Sample programs (assembly): Delay using Timer and interrupt, Programming Timer 0&1, Data transmission and reception using Serial port.

Interfacing with 8051 PART I
Software and Hardware tools for development of microcontroller-based systems such as assemblers, compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer, Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADC Interfacing. All Programs in assembly language and C.

Interfacing with 8051 PART II
8051 timer programming, serial port and its programming, interrupt programming, LCD and keyboard interfacing, ADC and DAC interfacing, interfacing to external memory Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto-isolators. All programs in assembly and C
UNIT - 4

PIC Microcontroller Architecture
PIC 10, PIC12, PIC16, PIC18 series comparison, features and selection as per application PIC18FXX architecture, registers, memory Organization and types, stack, oscillator options, BOD, power down modes and configuration bit settings, timer and its programming, Brief summary of Peripheral support, Overview of instruction set, MPLAB IDE & C18 Compiler

UNIT - 5

Real World Interfacing Part I
Port structure with programming, Interrupt Structure (Legacy and priority mode) of PIC18F with SFRS, Interfacing of switch, LED, LCD (4&8 bits), and Key board, Use of timers with interrupts, CCP modes: Capture, Compare and PWM generation, DC Motor speed control with CCP: All programs in embedded C.

UNIT - 6

Real World Interfacing Part II

TEXT/REFERENCE BOOKS

2. Microprocessor and interfacing 8085, Douglas V Hall, Tata Mc Gram Hill.
3. Microprocessor-Architecture, programming and application with 8085, gaonkar, penram international.
5. ARM system-on-chip architecture, 2e pearson education.
7. D V kodavade, S. Narvadkar, 8085-86 microprocessors Architecture progg and interfaces, wiley.
8. Udyashankara V., Mallikarjunaswamy, 8051 microcontroller, TMH.
10. Ayala, 8051 microcontroller, cengage (Thomson).
11. Rout 8085 microcontroller-architecture, programming and application, 2nd edi, penram international.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEXPE506A</td>
<td>Probability Theory and Random Processes</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:

- To develop basic of probability and random variables.
- The primary objective of this course is to provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in engineering and applied science.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Understand representation of random signals
2. Investigate characteristics of random processes
3. Make use of theorems related to random signals
4. To understand propagation of random signals in LTI systems.

UNIT - 1

Introduction to Probability

Definitions, scope and history; limitation of classical and relative- frequency- based definitions, Sets, fields, sample space and events; axiomatic definition of probability, Combinatorics: Probability on finite sample spaces, Joint and conditional probabilities, independence, total probability; Bayes' rule and applications.

UNIT - 2

Random variables

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf); probability density functions (pdf) and properties, Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables, Function of random a variable, pdf of the function of a random variable; Function of two random variables; Sum of two independent random variables, mean, variance and moments of a random variable,
Joint moments, conditional expectation; covariance and correlation, independent, uncorrelated and orthogonal random variables.

UNIT - 3

Random vector and distributions
Mean vector, covariance matrix and properties, Some special distributions: Uniform, Gaussian and Rayleigh distributions; Binominal, and Poisson distributions; Multivariate Gaussian distribution, Vector- space representation of random variables, linear independence, inner product, Schwarz Inequality, Elements of estimation theory: linear minimum mean - square error and orthogonality principle in estimation; Moment - generating and characteristic functions and their applications, Bounds and approximations: Chebysev inequality and Chernoff Bound.

UNIT - 4

Sequence of random variables and convergence
Almost sure convergence and strong law of large numbers; convergence in mean square sense with examples from parameter estimation; convergence in probability with examples; convergence in distribution, Central limit theorem and its significance.

UNIT - 5

Random process
Random process: realizations, sample paths, discrete and continuous time processes, examples, Probabilistic structure of a random process; mean, autocorrelation and auto - covariance functions, Stationarity: strict - sense stationary (SSS) and wide- sense stationary (WSS) processes, Autocorrelation function of a real WSS process and its properties, cross- correlation function, Ergodicity and its importance.

UNIT - 6

Spectral representation of a real WSS process
Power spectral density, properties of power spectral density, cross- power spectral density and properties; auto- correlation function and power spectral density of a WSS random sequence, Line ar time - invariant system with a WSS process as an input: stationarity of the output, auto -correlation and power - spectral density of the output; examples with white - noise as input; linear shift - invariant discrete- time system with a WSS sequence as
input, Spectral factorization theorem, Examples of random processes: white noise process and white noise sequence; Gaussian process; Poisson process, Markov Process.

TEXT/REFERENCE BOOKS

2. Probability and Random Processes by Geoffrey Grimmett, David Stirzaker

BTEXPE506C Data Structure & Algorithms Using Java Programming 03 Credits

Prerequisites: Basic knowledge of C language is required.

Course Objectives:

- To assess how the choice of data structures and algorithm design methods impacts the performance of programs.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To study the systematic way of solving problems, various methods of organizing large amounts of data.
Dr. Babasaheb Ambedkar Technological University, Lonere.

- To solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees, and graphs and writing programs for these solutions.
- To employ the different data structures to find the solutions for specific problems

Course Outcomes:

On completion of the course, student will be able to:

1. To impart the basic concepts of data structures and algorithms.
2. To understand concepts about searching and sorting techniques
3. Describe how arrays, records, linked structures are represented in memory and use them in algorithms.
4. To understand basic concepts about stacks, queues, lists trees and graphs.
5. To enable them to write algorithms for solving problems with the help of fundamental data structures.

UNIT - 1

Introduction

Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis

UNIT - 2

Stacks and Queues

ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each type of Queues: Algorithms and their analysis.

UNIT - 3

Linked Lists

Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.
UNIT - 4

Trees
Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees, B Tree, B+ Tree: definitions, algorithms and analysis.

UNIT - 5

Sorting and Hashing
Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing.

UNIT - 6

Graph
Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

TEXT/REFERENCE BOOKS

2. “How to Solve it by Computer”, 2nd Impression by R. G. Dromey, Pearson Education.
Course Objectives:
- The objective of this course is to make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.
- This enables them to design, analysis, fabrication and testing the MEMS based components and to introduce the students various opportunities in the emerging field of MEMS.
- This will enables student to study applications of micro-sensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints, Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Outcomes:
At the end of the course the students will be able to
1. Appreciate the underlying working principles of MEMS and NEMS devices.
2. Design and model MEM devices.

UNIT - 1

Introduction to MEMS

UNIT - 2

Control and Materials of MEMS
Controls of MEMS: Analog control of MEMS, Sliding mode control of MEMS, Digital control of MEMS, Materials for MEMS: Substrate and wafers, Active substrate material, silicon, Silicon compound, Silicon pezoresisters, Gallium arsenide, Quartz, piezoelectric crystals, Polymers.
Review of Basic MEMS fabrication modules:
MEMS fabrication modules, Oxidation, Deposition Techniques, Lithography (LIGA), and Etching

Micromachining
Micromachining, Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, Wafer Bonding

Mechanics of solids in MEMS/NEMS

TEXT/REFERENCE BOOKS

Course Objectives:
- To understand the applications of electromagnetic engineering.
- To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave.
- To analyze and understand the Uniform plane wave propagation in various media.
- To solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes:
After successfully completing the course students will be able to
1. Formulate the wave equation and solve it for uniform plane wave.
2. Analyze the given wire antenna and its radiation characteristics.
3. Identify the suitable antenna for a given communication system.

UNIT - 1

Uniform Plane Waves

UNIT - 2

Wave Propagation

UNIT - 3

Antenna Fundamentals
Introduction, Types of Antenna, Radiation Mechanism, Antenna Terminology: Radiation pattern, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half power beam width, bandwidth, antenna polarization, input impedance, antenna radiation
efficiency, effective length, effective area, reciprocity. Radiation Integrals: Vector potentials A, J, F, M, Electric and magnetic fields electric and magnetic current sources, solution of inhomogeneous vector potential wave equation, far field radiation.

UNIT - 4

Wire Antennas
Analysis of Linear and Loop antennas: Infinitesimal dipole, small dipole, and finite length dipole half wave length dipole, small circular loop antenna. Complete Analytical treatment of all these elements.

UNIT - 5

Antenna Arrays

UNIT - 6

Antennas and Applications
Structural details, dimensions, radiation pattern, specifications, features and applications of following Antennas: Hertz & Marconi antennas, V- Antenna, Rhombic antenna. TW antennas. Loop antenna, Whip antenna, Biconical, Helical, Horn, Slot, Microstrip, Turnstile, Super turnstile & Lens antennas. Antennas with parabolic reflectors.

TEXT/REFERENCE BOOKS

Course Objectives:
- To develop an understanding of modern network architectures from a design and performance perspective.
- To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- To provide an opportunity to do network programming.
- To provide a WLAN measurement ideas.

Course Outcomes:
1. To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.
2. To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.
3. To be familiar with wireless networking concepts.
4. To be familiar with contemporary issues in networking technologies.
5. To be familiar with network tools and network programming.
6. For a given requirement (small scale) of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component.
7. For a given problem related TCP/IP protocol developed the network programming.
8. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

UNIT - 1

Physical Layer
Switching: Circuit switched networks, Packet Switching, Structure of a switch.
Data Link Layer
Introduction to Data Link Layer, DLC Services, DLL protocols, HDLC, PPP, Media Access Control: Random Access, Controlled Access, Channelization. Wired LAN: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Giagabit Ethernet, 10 Gigabit Ethernet.

Wireless LANS & Virtual Circuit Networks
Introduction, Wireless LANS: IEEE 802.11 project, Bluetooth, Zigbee, Connecting devices and Virtual LANS: Connecting devices, Virtual LANS.

Network Layer
Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols.

Transport Layer

Application Layer
Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography

TEXT/REFERENCE BOOKS

6. TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.

| BTETC603 | Digital Image Processing | 3 Credits |

Course Objectives:
An ability to use current techniques, skills, and tools necessary for computing practice with an understanding of the limitations

Course Outcomes:
After completion of this course students will be able to

1. Review the fundamental concepts of digital image processing system.
2. Analyze images in the frequency domain using various transforms.
3. Categories various compression techniques.
4. Interpret image segmentation and representation techniques.

UNIT - 1

Concept of Visual Information

UNIT - 2

Image Perception
UNIT - 3

Image Sampling

Two dimensional Sampling theory, Extensions of sampling theory, Non-rectangular Grid sampling, Hexagonal sampling, Optimal sampling, Image Quantization: The optimum Mean Square Lloyd-Max quantiser, Optimum mean square uniform quantiser for non-uniform densities, Analytic Models for practical quantisers, Visual quantization, Vector Quantization

UNIT - 4

Image Transforms

Two dimensional orthogonal and unitary transforms, Separable unitary transforms, Basis images, Dimensionality of Image Transforms, Discrete linear orthogonal, DFT, WHT, KLT, DCT and SVD, Quantisation of Transform coefficients, Transform Coding of Color images

UNIT - 5

Image Enhancement

Contrast and dynamic Range Modification, Histogram-based operations, Smoothing operations, Edge Detection-derivative based operation, Image Interpolation and Motion Estimation, Pseudo coloring

UNIT - 6

Image Restoration

TEXT/REFERENCE BOOKS

Dr. Babasaheb Ambedkar Technological University, Lonere.

<table>
<thead>
<tr>
<th>BTETPE604A</th>
<th>CMOS Design</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objectives:
- To develop an understanding of design different CMOS circuits using various logic families along with their circuit layout.
- To introduce the student how to use tools for VLSI IC design.

Course Outcomes:
At the end of the course the students will be able to
1. Design different CMOS circuits using various logic families along with their circuit layout.
2. Use tools for VLSI IC design.

UNIT - 1
Review of MOS transistor models, Non-ideal behavior of the MOS Transistor, Transistor as a switch. Inverter characteristics

UNIT - 2
Integrated Circuit Layout: Design Rules, Parasitics

UNIT - 3
Delay: RC Delay model, linear delay model, logical path efforts

UNIT - 4
Power, interconnect and Robustness in CMOS circuit layout

UNIT - 5
Combinational Circuit Design: CMOS logic families including static, dynamic and dual rail logic

UNIT - 6

TEXT/REFERENCE BOOKS

<table>
<thead>
<tr>
<th>BTETPE604B</th>
<th>Information Theory and Coding</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objectives:
- To provide in-depth understanding of principles and applications of information theory.
- To provide in-depth understanding of how information is measured in terms of probability and entropy and how these are used to calculate the capacity of a communication channel.
- To provide in-depth understanding of different coding techniques for error detection and correction.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the concept of information and entropy
2. Understand Shannon’s theorem for coding
3. Calculation of channel capacity
4. Apply coding techniques

UNIT - 1

Theory of Probability and Random Processes
Concept of probability, random variables, random process, power spectral density of a random process, probability models, statistical averages, central limit theorem, correlation, linear mean square estimation

UNIT - 2

Noise in Communication Systems
Behavior of analog and digital communication systems in the presence of noise, Sources of noise, Noise representation, Noise filtering, Noise bandwidth, Performance of analog and digital communication systems in the presence of noise.
UNIT - 3

Information Theory
Measure of information, Joint entropy and conditional entropy, Relative entropy and mutual information, Markov sources, Source encoding, Shannon-Fano coding and Huffman coding, Shannon's first and second fundamental theorems, Channel capacity theorem.

UNIT - 4

Error Correcting Codes
Galois fields, Vector spaces and matrices, Block codes, Cyclic codes, Burst-error detecting and correcting codes, Multiple error correcting codes, Convolutional codes, ARQ

UNIT - 5

Markov sources
Shannon's noisy coding theorem and converse for discrete channels; Calculation of channel capacity and bounds for discrete channels; Application to continuous channels

UNIT - 6

Speech Coding
Characteristics of speech signal, Quantization techniques, Frequency domain coding, Vocoder, Linear predictive coders, Codecs for mobile communication, GSM codec, USDC codec, Performance evaluation of speech coders.

TEXT/REFERENCE BOOKS

1. B. P. Lathi; Modern Digital and Analog Communication Systems; Oxford Publication.
2. Das, Mullick, Chaterjee; Principles of Digital Communication; New Age International.
4. Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, Wiley Inter science.
5. R.P.Singh, S.D. Sapre; Communication systems: Analog and Digital; TMH.
Course Objectives:

- To introduce students to different power devices to study their construction, characteristics and turning on circuits.
- To give an exposure to students of working & analysis of controlled rectifiers for different loads, inverters, DC choppers, AC voltage controllers and resonant converters.
- To study the different motor drives, various power electronics applications like UPS, SMPS, etc. and some protection circuits.

Course Outcomes:

At the end of this course students will demonstrate the ability to

1. Build and test circuits using power devices such as SCR
2. Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters.
3. Learn how to analyze these inverters and some basic applications.
4. Design SMPS.

UNIT - 1

Characteristics of Semiconductor Power Devices

Thyristor, power MOSFET and IGBT- Treatment should consist of structure, Characteristics, operation, ratings, protections and thermal considerations. Brief introduction to power devices viz. TRIAC, MOS controlled thyristor (MCT), Power Integrated Circuit (PIC) (Smart Power), Triggering/Driver, commutation and snubber circuits for thyristor, power MOSFETs and IGBTs (discrete and IC based). Concept of fast recovery and schottky diodes as freewheeling and feedback diode.

UNIT - 2

Controlled Rectifiers

Single phase: Study of semi and full bridge converters for R, RL, RLE and level loads. Analysis of load voltage and input current- Derivations of load form factor and ripple factor, Effect of source impedance, Input current Fourier series analysis of input current to derive input supply power factor, displacement factor and harmonic factor.
UNIT - 3

Choppers
Quadrant operations of Type A, Type B, Type C, Type D and type E choppers, Control techniques for choppers – TRC and CLC, Detailed analysis of Type A chopper. Step up chopper. Multiphase Chopper.

UNIT - 4

Single-phase inverters
Principle of operation of full bridge square wave, quasi-square wave, PWM inverters and comparison of their performance. Driver circuits for above inverters and mathematical analysis of output (Fourier series) voltage and harmonic control at output of inverter (Fourier analysis of output voltage). Filters at the output of inverters, Single phase current source inverter.

UNIT - 5

Switching Power Supplies
Analysis of fly back, forward converters for SMPS, Resonant converters - need, concept of soft switching, switching trajectory and SOAR, Load resonant converter - series loaded half bridge DC-DC converter.

UNIT - 6

Applications
Power line disturbances, EMI/EMC, power conditioners. Block diagram and configuration of UPS, salient features of UPS, selection of battery and charger ratings, sizing of UPS, Separately excited DC motor drive. P M Stepper motor Drive

TEXT/REFERENCE BOOKS

1. Muhammad H. Rashid, “Power electronics” Prentice Hall of India.
Course Objectives:
- To convey the basic concepts of Nano electronics to engineering students with no background in quantum mechanics and statistical mechanics.
- Main objective of this is to provide the basic platform and deep information of different Nano electronics devices like MOSFET, FINFET, Nano metrology tools used to design the recently developing VLSI applications.
- This subject gives idea about the role and importance of the Nano electronic devices system in engineering world to develop the research ideas in VLSI.
- Recent technology proceeds with MOSFET with 64nm technology, the need Nano electronic Devices and Material subject to achieve transistor size which is less than current technology.
- The content of this course gives platform to the Nano electronics world and innovative ideas to ensure the knowledge of real time applications which helps students to stand them in Indian and multinational industries.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand various aspects of nano-technology and the processes involved in making nano components and material.
2. Leverage advantages of the nano-materials and appropriate use in solving practical problems.
3. Understand various aspects of nano-technology and the processes involved in making nano components and material.
4. Leverage advantages of the nano-materials and appropriate use in solving practical problems.

UNIT - 1

Overview Nano Technology
Introduction to nanotechnology, Nano devices, Nano materials, Nano characterization, Definition of Technology node, Basic CMOS Process flow, meso structures.
UNIT - 2

Basics of Quantum Mechanics

Schroedinger equation, Density of States, Particle in a box Concepts, Degeneracy, Band Theory of Solids, Kronig-Penny Model. Brillouin Zones

UNIT - 3

MOS Scaling theory

Shrink-down approaches: Introduction, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.)

UNIT - 4

Nano electronics Semiconductor devices

Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics, Band structure and transport, devices, applications, 2D semiconductors and electronic devices, Graphene, atomistic simulation

UNIT - 5

Properties of Nano devices

Vertical transistors, Fin FET and Surround gate FET. Metal source/drain junctions – Properties of schottky functions on Silicon, Germanium and compound semiconductors - Work function pinning.

UNIT - 6

Characterization techniques for Nano materials

FTIR, XRD, AFM, SEM, TEM, EDAX Applications and interpretation of results, Emerging nano material, nano tubes, Nano rods and other Nano structures, LB technique, Soft lithography Microwave assisted synthesis, Self-assembly.

TEXT/REFERENCE BOOKS

1. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson, 2009.
Course Objectives:
Android Application Development course is designed to quickly get you up to speed with writing apps for Android devices. The student will learn the basics of Android platform and get to understand the application lifecycle.

Course Outcomes:
At the end of the course, students will demonstrate the ability to write simple GUI applications, use built-in widgets and components, work with the database to store data locally, and much more.

UNIT - 1

Introduction to Mobile Operating Systems and Mobile Application Development

Introduction to Mobile OS:
Palm OS, Windows CE, Embedded Linux, J2ME (Introduction), Symbian (Introduction),

UNIT - 2

Android Activities, UI Design and Database
Understanding Intent, Activity, Activity Lifecycle and Manifest, Form widgets, Text Fields, Layouts: Relative Layout, Table Layout, Frame Layout, Linear Layout, Nested layouts.
UI design: Time and Date, Images and media, Composite, Alert Dialogs & Toast, Popup.
Menu: Option menu, Context menu, Sub menu.
Database: Introducing SQLite, SQLite Open Helper, SQLite Database, Cursor, Content providers: defining and using content providers, example- Sharing database among two different applications using content providers, Reading and updating Contacts, Reading bookmarks.
Preferences, Intents and Notifications
Preferences: Shared Preferences, Preferences from xml, Intents: Explicit Intents, Implicit intents.
Notifications: Broadcast Receivers, Services (Working in background) and notifications, Alarms.

Telephony, SMS and Location Based Services
Telephony: Accessing phone and Network Properties and Status, Monitoring Changes in Phone State, Phone Activity and data Connection.
SMS: Sending SMS and MMS from your Application, sending SMS Manually, Listening for incoming SMS.
Location based Services: Using Location Based Services, Working with Google Maps, Geocoder.

Accessing Android Hardware
Networking: An overview of networking, checking the network status, communicating with a server socket, Working with HTTP, Web Services.
Bluetooth: Controlling local Bluetooth device, Discovering and bonding with Bluetooth devices, Managing Bluetooth connections, communicating with Bluetooth.

Audio Video Handling
Playing Audio and Video, Recording Audio and Video, Using Camera and Taking Picture

TEXT/REFERENCE BOOKS
2. Lauren Dercy and Shande Conder “Sams teach yourself Android application development”, Sams publishing
Course Objectives:

- The concept and theory of digital Electronics are needed in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well.

- The main objective of this course is to lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuit.

- This course will explore the basic concepts of digital electronics.

Course outcomes:

At the end of this course students will demonstrate the ability to

1. Design and analyze combinational logic circuits
2. Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
3. Design & analyze synchronous sequential logic circuits
4. Use HDL & appropriate EDA tools for digital logic design and simulation.

UNIT - 1

Logic Simplification and Combinational Logic Design

Review of Boolean algebra and De Morgan’s Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

UNIT - 2

MSI devices

Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU

UNIT - 3

Sequential Logic Design

Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation
Logic Families and Semiconductor Memories

TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing.

Memory Elements

Concept of Programmable logic devices like FPGA, Logic implementation using Programmable Devices

VLSI Design flow

Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

TEXT/REFERENCE BOOKS

Course Objectives:

- Introduction to optimization techniques using both linear and non-linear programming
- The focus of the course is on convex optimization though some techniques will be covered for non-convex function optimization.

Course Outcomes:

1. After completion of this course students will be able to
2. Cast engineering minima/maxima problems into optimization framework
3. Learn efficient computational procedures to solve optimization problems

UNIT - 1

Introduction and Basic Concepts
Historical Development; Engineering applications of Optimization; Art of Modeling, Objective function; Constraints and Constraint surface; Formulation of design problems as mathematical programming problems, Classification of optimization problems, Optimization techniques – classical and advanced techniques

UNIT - 2

Optimization using Calculus
Stationary points; Functions of single and two variables; Global Optimum, Convexity and concavity of functions of one and two variables, Optimization of function of one variable and multiple variables; Gradient vectors; Examples, Optimization of function of multiple variables subject to equality constraints; Lagrangian function, Optimization of function of multiple variables subject to equality constraints; Hessian matrix formulation; Eigen values, Kuhn-Tucker Conditions; Examples

UNIT - 3

Linear Programming
Standard form of linear programming (LP) problem; Canonical form of LP problem; Assumptions in LP Models; Elementary operations, Graphical method for two variable optimization problem; Examples, Motivation of simplex method, Simplex algorithm and construction of simplex tableau; Simplex criterion; Minimization versus maximization problems, Revised simplex method; Duality in LP; Primal-dual relations; Dual Simplex method; Sensitivity or post optimality analysis, Other algorithms for solving LP problems – Karmarkar’s projective scaling method

UNIT - 4

Dynamic Programming
Sequential optimization; Representation of multistage decision process; Types of multistage decision problems; Concept of sub optimization and the principle of optimality. Recursive equations – Forward and backward recursions; Computational procedure in dynamic
programming (DP), Discrete versus continuous dynamic programming; Multiple state variables; curse of dimensionality in DP

UNIT - 5

Integer Programming
Integer linear programming; Concept of cutting plane method, Mixed integer programming; Solution algorithms; Examples

UNIT - 6

Advanced Topics in Optimization
Piecewise linear approximation of a nonlinear function, Multi objective optimization – Weighted and constrained methods; Multi level optimization, Direct and indirect search methods, Evolutionary algorithms for optimization and search

TEXT/REFERENCE BOOKS

Course Objectives:
- To help students understand Evolution of Management Thought, Concepts, basic functions and recent trends managerial concepts and practices for better business decisions.
- To introduce students to framework that are useful for diagnosing problems involving human behavior.
- To enable the students apply mathematical, computational and communication skills needed for the practical utility of Operations Research.
• To teach students about networking, inventory, queuing, decision and replacement models.
• To introduce students to research methods and current trends in Operations Research.

Course Outcomes:
Student will be able to

1. Apply operations research techniques like L.P.P, scheduling and sequencing in industrial optimization problems.
2. Solve transportation problems using various OR methods.
3. Illustrate the use of OR tools in a wide range of applications in industries.
4. Analyze various OR models like Inventory, Queing, Replacement, Simulation, Decision etc and apply them for optimization.
5. Gain knowledge on current topics and advanced techniques of Operations Research for industrial solutions.

UNIT - 1

Definition, need and importance of organizational behaviour, nature and scope, frame work, organizational behaviour models.

UNIT - 2

Organization structure, formation, groups in organizations, influence, group dynamics, emergence of informal leaders and working norms, group decision making techniques, interpersonal relations, communication, control.

UNIT - 3

Evolution of Management thoughts, Contribution of Selected Management Thinkers, Various approaches to management, contemporary management practice, Managing in global environment, Managerial functions.

UNIT - 4

Importance of planning, Types of planning, decision making process, Approaches to decision making, Decision models, Pay off Matrices, Decision trees, Break Even Analysis.

UNIT - 5

Departmentation, Span of Control, Delegation, Centralisation and Decentralisation, Commitees, Line and Staff relationships, Recent trends in organization structures.
UNIT - 6

TEXT/REFERENCE BOOKS

BTETOE605D Augmented, Virtual and Mixed Reality 3 Credits

Course Objectives:
An ability to use current techniques, skills, and tools necessary for computing practice with an understanding of the limitations

Course Outcomes:
After completion of this course students will be able to
1. To develop 3D virtual environments.
2. To develop 3D interaction techniques and immersive virtual reality applications.

UNIT - 1

Introduction & Geometry of Virtual Worlds
Course mechanics, Goals and VR definitions, Historical perspective, Birds-eye view
Geometric modeling, Transforming models, Matrix algebra and 2D rotations, 3D rotations and yaw, pitch, and roll, 3D rotations and yaw, pitch, and roll, Axis-angle representations, Quaternions, Converting and multiplying rotations, Homogeneous transforms, The chain of viewing transforms, Eye transforms, Canonical view transform, Viewport transform
UNIT - 2

Light and Optics
Three interpretations of light, Refraction, Simple lenses, Diopters, Imaging properties of lenses, Lens aberrations, Optical system of eyes

UNIT - 3

Visual Physiology & Visual Perception
Photoreceptors, Sufficient resolution for VR, light intensity, Eye movements, Eye movements, Eye movement issues for VR, Neuroscience of vision, Depth perception, Depth perception, Motion perception, Frame rates and displays, Frame rates and displays

UNIT - 4

Tracking Systems & Visual Rendering
Overview, Orientation tracking, Tilt drift correction, Yaw drift correction, Tracking with a camera, Perspective n-point problem, Filtering, Lighthouse approach, Visual Rendering overview, Shading models, Rasterization, Pixel shading, VR-specific problems, Distortion shading, Post-rendering image warp

UNIT - 5

Audio & Interfaces
Physics and physiology, auditory perception, Auditory localization, Rendering, Spatialization and display, combining other senses, Interfaces, Locomotion, Manipulation, System control, Social interaction, Evaluation of VR Systems.

UNIT - 6

Augmented Reality
System Structure of Augmented Reality; Key Technology in AR; General solution for calculating geometric & illumination consistency in the augmented environment

TEXT/REFERENCE BOOKS

<table>
<thead>
<tr>
<th>BTETO605E</th>
<th>Python Programming</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objective:

- Provide an understanding of the role computation can play in solving problems.
- Help students, including those who do not plan to major in Computer Science and Electrical Engineering, feel confident of their ability to write small programs that allow them to accomplish useful goals.
- Position students so that they can compete for research projects and excel in subjects with programming components.

Course Outcomes:

1. Experience with an interpreted Language.
2. To build software for real needs
3. Prior Introduction to testing software

UNIT - 1

Introduction: History of Python, Need of Python Programming, Applications Basics of Python Programming Using the REPL(Shell), Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation

UNIT - 2

Types, Operators and Expressions: Types – Integers, Strings, Booleans; Operators-Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations Control Flow- if, if-elif-else, for, while break, continue, pass

UNIT - 3

Data Structures Lists – Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences, Comprehensions
UNIT - 4

UNIT - 5

Object-Oriented Programming OOP in Python: Classes, ‘self-variable’, Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding, Error, and Exceptions: Difference between an error and Exception, Handling Exception, try except for block, Raising Exceptions, User Defined Exceptions

UNIT - 6

TEXT/REFERENCE BOOKS

2. Learning Python, Mark Lutz, Orielly
3. Think Python, Allen Downey, Green Tea Press
5. Introduction to Python, Kenneth A. Lambert, Cengage

BTETO605F Web Development and Design 3 Credits

Course Objectives:

- Define the principle of Web page design
- Define the basics in web design
- Visualize the basic concept of HTML.
- Recognize the elements of HTML.
- Introduce basics concept of CSS.
Dr. Babasaheb Ambedkar Technological University, Lonere.

- Develop the concept of web publishing

Course Outcomes:
On completion of the course, student will be able to:

1. Develop the skill & knowledge of Web page design
2. Understand the knowhow and can function either as an entrepreneur or can take up jobs in the multimedia and Web site development studio and other information technology sectors.

UNIT - 1
Web Design Principles, Basic principles involved in developing a web site, Planning process, Five Golden rules of web designing, Designing navigation bar, Page design, Layout of pages, Design Concept

UNIT - 2
Basics in Web Design, Brief History of Internet, What is World Wide Web, Why create a web site, Web Standards, Audience requirement

UNIT - 3
Introduction to HTML, HTML Documents, Basic structure of an HTML document, Creating an HTML document, Mark up Tags, Heading, Paragraphs, Line Breaks, HTML Tags

UNIT - 4
Elements of HTML, Working with Text, Lists, Tables and Frames, Hyperlinks, Images and Multimedia Working with Forms and controls

UNIT - 5
Introduction to Cascading Style Sheets, CSS Properties, CSS Styling (Background, Text Format, Controlling Fonts), Working with block elements and objects, Working with Lists and Tables, CSS Id and Class, Box Model (Introduction, Border properties, Padding Properties, Margin properties), CSS Advanced (Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector), CSS Color, Creating page Layout and Site Designs

UNIT - 6
Introduction to Web Publishing or Hosting, Creating the Web Site, Saving the site, Working
TEXT/REFERENCE BOOKS

2. Steven M. Schafer, HTML, XHTML, and CSS Bible, Wiley India, 5th Edition, 2010

BTHM606 Employability & Skill Development 2 Credits

Course Objectives:
- To develop analytical abilities.
- To develop communication skills.
- To introduce the students to skills necessary for getting, keeping and being successful in a profession.
- To expose the students to leadership and team-building skills.

Course Outcomes:
On completion of the course, student will be able to:
1. Have skills and preparedness for aptitude tests.
2. Be equipped with essential communication skills (writing, verbal and non-verbal)
3. Master the presentation skill and be ready for facing interviews.
4. Build team and lead it for problem solving.

Soft Skills & Communication basics
Soft skills Vs hard skills, Skills to master, Interdisciplinary relevance, Global and national perspectives on soft skills, Resume, Curriculum vitae, How to develop an impressive resume, Different formats of resume – Chronological, Functional, Hybrid, Job application or cover letter, Professional presentation- planning, preparing and delivering presentation, Technical writing.
UNIT - 2

Arithmetic and Mathematical Reasoning

Aspects of intelligence, Bloom taxonomy, multiple intelligence theory, Number sequence test, mental arithmetic (square and square root, LCM and HCF, speed calculation, reminder theorem).

UNIT - 3

Analytical Reasoning and Quantitative Ability

Matching, Selection, Arrangement, Verifications (Exercises on each of these types). Verbal aptitude (Synonym, Antonym, Analogy)

UNIT - 4

Grammar and Comprehension

English sentences and phrases, Analysis of complex sentences, Transformation of sentences, Paragraph writing, Story writing, Reproduction of a story, Letter writing, précis writing, Paraphrasing and e-mail writing

UNIT - 5

Skills for interviews

Interviews- types of interviews, preparatory steps for job interviews, interview skill tips, Group discussion- importance of group discussion, types of group discussion, difference between group discussion, panel discussion and debate, personality traits evaluated in group discussions, tips for successful participation in group discussion, Listening skills- virtues of listening, fundamentals of good listening, Non-verbal communication-body movement, physical appearance, verbal sounds, closeness, time

UNIT - 6

Problem Solving Techniques

TEXT/REFERENCE BOOKS

3. Philip Carter, "The Complete Book of Intelligence Test", John Willey & Sons Ltd.

BTETC701 Digital Communication 3 Credits

Course Objectives:
- To understand the building blocks of digital communication system.
- To prepare mathematical background for communication signal analysis.
- To understand and analyze the signal flow in a digital communication system.
- To analyze error performance of a digital communication system in presence of noise and other interferences.
- To understand concept of spread spectrum communication system.

Course Outcomes:
1. Analyze the performance of a baseband and pass band digital communication system in terms of error rate and spectral efficiency.
2. Perform the time and frequency domain analysis of the signals in a digital communication system.
3. Select the blocks in a design of digital communication system.
4. Analyze Performance of spread spectrum communication system.

UNIT - 1

Digital Transmission of Analog Signal

UNIT - 2

Baseband Digital Transmission
Digital Multiplexing: Multiplexers and hierarchies, Data Multiplexers. Data formats and their spectra, synchronization: Bit Synchronization, Scramblers, Frame Synchronization. Inter-symbol interference, Equalization.

UNIT - 3

Random Processes
Introduction, Mathematical definition of a random process, Stationary processes, Mean, Correlation & Covariance function, Ergodic processes, Transmission of a random process through a LTI filter, Power spectral density, Gaussian process, noise, Narrow band noise, Representation of narrowband noise in terms of in phase & quadrature components.

UNIT - 4

Baseband Receivers

UNIT - 5

Passband Digital Transmission
Pass band transmission model, Signal space diagram, Generation and detection, Error Probability derivation and Power spectra of coherent BPSK, BFSK and QPSK. Geometric representation, Generation and detection of - M-ary PSK, M-ary QAM and their error probability, Generation and detection of -Minimum Shift Keying, Gaussian MSK, Non-coherent BFSK, DPSK and DE PSK ,Introduction to OFDM.
UNIT - 6

Spread Spectrum Techniques

TEXT/REFERENCE BOOKS

BTETPE702A Microwave Theory and Techniques 3 Credits

Course Objectives:
- To lay the foundation for microwave engineering.
- To understand the applications of microwave engineering.
- Carryout the microwave network analysis.

Course Outcomes:
After successfully completing the course students will be able to
1. Formulate the wave equation in wave guide for analysis.
2. Identify the use of microwave components and devices in microwave applications.
3. Understand the working principles of all the microwave tubes.
4. Understand the working principles of all the solid state devices.
5. Choose a suitable microwave tube and solid state device for a particular application.
6. Carry out the microwave network analysis.
7. Choose a suitable microwave measurement instruments and carry out the required measurements.

UNIT - 1

Transmission Lines and Waveguides:
Introduction to Microwaves engineering: History of Microwaves, Microwave Frequency bands. Applications of Microwave, General solution for TEM, TE and TM waves, Parallel plate waveguide, and rectangular waveguide, Wave guide parameters, Introduction to coaxial line, Rectangular waveguide cavity resonators, Circular waveguide cavity resonators.

UNIT - 2

Microwave Components:
Multi-port junctions: Construction and operation of E-plane, H-plane, Magic Tee and Directional couplers. Ferrites components: - Ferrite Composition and characteristics, Faraday rotation, Construction and operation of Gyrator, Isolator and Circulator.

Striplines: Structural details and applications of Striplines, Microstrip line, Parallel Strip line, Coplanar Strip line, Shielded Strip Line.

UNIT - 3

Microwave Network Analysis

UNIT - 4

Microwave Tubes
Limitations of conventional tubes, O and M type classification of microwave tubes, reentrant cavity, velocity modulation. O type tubes Two cavity Klystron: Construction and

UNIT - 5

Microwave bipolar transistor, FET, MESFET, Varactor Diode, PIN Diode, Shottky Barrier Diode, Tunnel Diode, TEDs, Gunn Diodes, IMPATT diode and TRAPATT diode. Structural details, Principle of operation, various modes, specifications, and applications of all these devices.

UNIT - 6

Microwave Measurements
Measurement devices: Slotted line, Tunable detector, VSWR meter, Power Meter, S-parameter measurement, frequency measurements, Power measurement, Attenuation measurement, Phase shift measurement, VSWR measurement, Impedance measurement, Q of cavity resonator measurement.

TEXT/REFERENCE BOOKS

1. Microwave Engineering – Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010
2. Microwave Devices and circuits- Liao / Pearson Education
Course Objectives:

- To study RF issues related to active and passive components.
- To study circuit design aspects at RF.
- To learn design and modeling of circuits at RF.

Course Outcomes:

After successfully completion of the course students will be able to:

1. Understand behavior of passive components at high frequency and modeling of HF circuit.
2. Design HF amplifiers with gain bandwidth parameters.
3. Understand Mixer types and characteristics.
4. Gain the knowledge about PLLs and Oscillators with respect to their circuit topologies.

UNIT - 1

RF Behavior of Passive Components

UNIT - 2

Bandwidth Estimation

UNIT - 3

High Frequency Amplifier Design

UNIT - 4

Low Noise Amplifier Design

UNIT - 5

Oscillators

UNIT - 6

Mixers

TEXT/REFERENCE BOOKS

Course Objectives:

- To provide students with good depth of knowledge in radar and Satellite communication.
- Knowledge of theory and practice of advanced communication techniques e.g. TDMA, CDMA, FDMA.
- This will equip the students for further studies and research knowledge of modern applications in radar and Satellite communication.

Course Outcomes:

At the end of the course, the students will have:

2. Ability to identify, formulate and solve engineering problems related to radar and Satellite communication.
3. The student would be able to analyze the various aspects of establishing a geo-stationary satellite communication link.
5. Acquired knowledge about Radar and Radar Equations.

UNIT - 1

Basic Principles

General features, frequency allocation for satellite services, properties of satellite communication systems.

Earth Station: Introduction, earth station subsystem, different types of earth stations.

UNIT - 2

Satellite Orbits

Introduction, Kepler's laws, orbital dynamics, orbital characteristics, satellite spacing and orbital capacity, angle of elevation, eclipses, launching and positioning, satellite drift and station keeping.
UNIT - 3

Satellite Construction (Space Segment)
Introduction; attitude and orbit control system; telemetry, tracking and command; power systems, communication subsystems, antenna subsystem, equipment reliability and space qualification.

UNIT - 4

Satellite Links
Introduction, general link design equation, system noise temperature, uplink design, downlink design, complete link design, effects of rain.

UNIT - 5

The Space Segment Access and Utilization
Introduction, space segment access methods: TDMA, FDMA, CDMA, SDMA, assignment methods.

UNIT - 6

The Role and Application of Satellite Communication
Introduction to Digital Satellite and Mobile Satellite Communication.

TEXT/REFERENCE BOOKS

4. M. O. Kolawole, Satellite Communication Engineering, Marcel Dekker, Inc. NY.
Course Objectives:

- To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures.
- To understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors.
- To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes
- Understand the functionality of each of the components that comprise a fiber-optic communication system: transmitter, fiber, amplifier, and receiver.
- Understand the properties of optical fiber that affect the performance of a communication link.
- Understand basic optical amplifier operation and its effect on signal power and noise in the system.
- Apply concepts listed above to the design of a basic communication link.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

1. Understand the principles fiber-optic communication, the components and the bandwidth advantages.
2. Understand the properties of the optical fibers and optical components.
3. Understand operation of lasers, LEDs, and detectors.
4. Analyze system performance of optical communication systems.
5. Design optical networks and understand non-linear effects in optical fibers

UNIT - 1

Introduction

Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model.
UNIT - 2

Types of optical fibers
Different types of optical fibers, Modal analysis of a step index fiber, Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR.

UNIT - 3

Optical sources
LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detector responsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties

UNIT - 4

Optical switches
Coupled mode analysis of directional couplers, electro-optic switches.

UNIT - 5

Optical amplifiers
EDFA, Raman amplifier, WDM and DWDM systems, Principles of WDM networks.

UNIT - 6

Nonlinear effects in fiber optic links
Nonlinear effects in fiber optic links, Concept of self-phase modulation, group velocity dispersion and solition based communication.

TEXT/REFERENCE BOOKS
Course Objectives:
- To introduce the emerging research areas in the field of wireless sensor networks
- To understand different protocols and their uses in WSN.

Course Outcomes:
At the end of the course, the students will be able to
1. Design wireless sensor networks for a given application
2. Understand emerging research areas in the field of sensor networks
3. Understand MAC protocols used for different communication standards used in WSN
4. Explore new protocols for WSN.

UNIT - 1

Introduction
Introduction to Sensor Networks, unique constraints and challenges, Advantage of Sensor Networks, Applications of Sensor Networks, Types of wireless sensor networks

UNIT - 2

Networks

UNIT - 3

Protocols
Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE 802.15.4 standard and ZigBee.

UNIT - 4

Dissemination protocol
Dissemination protocol for large sensor network, Data dissemination, data gathering, and data fusion; Quality of a sensor network; Real-time traffic support and security protocols.
UNIT - 5

Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication, and Internet to WSN Communication.

UNIT - 6

Single-node architecture, Hardware components & design constraints, Operating systems and execution environments.

TEXT/REFERENCE BOOKS

BTETPE702F Mobile Computing 3 Credits

Course Objectives:

- To provide guidelines, design principles and experience in developing applications for small, mobile devices, including an appreciation of context and location aware services.
- To introduce wireless communication and networking principles, that support connectivity to cellular networks, wireless internet and sensor devices.
- To appreciate the social and ethical issues of mobile computing, including privacy.

Course Outcomes:

1. At the end of the course, the student will be able to demonstrate:
2. A working understanding of the characteristics and limitations of mobile hardware devices including their user-interface modalities
3. The ability to develop applications that are mobile-device specific and demonstrate current practice in mobile computing contexts.
4. A comprehension and appreciation of the design and development of context-aware solutions for mobile devices.
5. An awareness of professional and ethical issues, in particular those relating to security and privacy of user data and user behavior.

UNIT - 1

UNIT - 2

UNIT - 3

UNIT - 4
Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunication System (UMTS).

UNIT - 5

UNIT - 6

TEXT/REFERENCE BOOKS

<table>
<thead>
<tr>
<th>BTETPE703A</th>
<th>Embedded System Design</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objectives:
- To understand the embedded system design issues.
- To learn real time operating system concepts.
- To understand the Embedded Linux environment.
- To learn embedded software development and testing process.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Suggest design approach using advanced controllers to real-life situations.
2. Design interfacing of the systems with other data handling / processing systems.
3. Appreciate engineering constraints like energy dissipation, data exchange speeds etc.
4. Get to know the hardware – software co design issues and testing methodology for embedded system.

UNIT - 1
Introduction to Embedded Computing
The concept of embedded systems design, Characteristics of Embedding Computing Applications, Concept of Real time Systems

UNIT - 2
Design Process
Requirements, Specifications, Architecture Design, Designing of Components, Embedded microcontroller cores, embedded memories. Examples of embedded systems

UNIT - 3
Technological aspects of embedded systems
Interfacing between analog and digital blocks, signal conditioning, digital signal processing, subsystem interfacing, interfacing with external systems, user interfacing.
UNIT - 4

Design tradeoffs

Design tradeoffs due to process compatibility, thermal considerations, etc. Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.

UNIT - 5

Operating System

UNIT - 6

Scheduling and Inter-process Communication

Rate-Monotonic Scheduling, Earliest-Deadline First Scheduling, Task Assignment, Fault-Tolerant Scheduling Signals, Shared Memory Communication, Message-Based Communication

TEXT/REFERENCE BOOKS

BTETPE703B
Artificial Intelligence Deep Learning
3 Credits

Course Objectives:

- Apply AI techniques to solve the given problems.
- Implement trivial AI techniques on relatively large system
- Explain uncertainty and Problem solving techniques.
- Compare various learning techniques.
Course Outcomes:
This course will enable students to
1. Identify the AI based problems.
2. Apply techniques to solve the AI problems.
3. Define learning and explain various logic inferences.
4. Discuss different learning techniques.

UNIT - 1

Introduction:

UNIT - 2

Search Techniques:

UNIT - 3

Game Playing:
UNIT - 4

Logic and inference:

UNIT - 5

Learning:

TEXT/REFERENCE BOOKS

Course Objectives:
- To study HDL based design approach.
- To learn digital CMOS logic design.
- To nurture students with CMOS analog circuit designs.
- To realize importance of testability in logic circuit design.
- To overview SoC issues and understand PLD architectures with advanced features.

Course Outcomes:
After successfully completing the course, students will be able to
1. Model digital circuit with HDL, simulate, synthesis and prototype in PLDs.
2. Understand chip level issues and need of testability.
3. Design analog & digital CMOS circuits for specified applications

UNIT - 1

VHDL Modeling
Data objects, Data types, Entity, Architecture & types of modeling, Sequential statements, Concurrent statements, Packages, Sub programs, Attributes, VHDL Test bench, Test benches using text files. VHDL modeling of Combinational, Sequential logics & FSM, Meta-stability.

UNIT - 2

PLD Architectures

UNIT - 3

SoC & Interconnect
Clock skew, Clock distribution techniques, clock jitter, Supply and ground bounce, power distribution techniques. Power optimization, Interconnect routing techniques; wire parasitic, Signal integrity issues, I/O architecture, pad design, Architectures for low power.
UNIT - 4

Digital CMOS Circuits
MOS Capacitor, MOS Transistor theory, C-V characteristics, Non ideal I-V effects, Technology Scaling. CMOS inverters, DC transfer characteristics, Power components, Power delay product, Transmission gate. CMOS combo logic design, Delays: RC delay model, Effective resistance, Gate and diffusion capacitance, Equivalent RC circuits; Linear delay model, Logical effort, Parasitic delay, Delay in a logic gate, Path logical efforts.

UNIT - 5

Analog CMOS Design
Current sink and source, Current mirror, Active load, Current source and Push-pull inverters, Common source, Common drain, Common gate amplifiers. Cascade amplifier, Differential amplifier, Operational amplifier

UNIT - 6

Testability
Types of fault, Need of Design for Testability (DFT), Testability, Fault models, Path sensitizing, Sequential circuit test, BIST, Test pattern generation, JTAG & Boundary scan, TAP Controller.

TEXT/REFERENCE BOOKS

1. Charles H. Roth, “Digital systems design using VHDL”, PWS.
Course Objectives:
- The concept of security, types of attack experienced.
- Encryption and authentication for deal with attacks, what is data compression, need and techniques of data compression.

Course Outcomes:
At the end of this course
1. The student will have the knowledge of Plaintext, cipher text, RSA and other cryptographic algorithm.
2. The student will have the knowledge of Key Distribution, Communication Model, Various models for data compression.

UNIT - 1
Data Compression and Encryption:
Need for data compression, Lossy/lossless compression, symmetrical compression and compression ratio, run length encoding for text and image compression, relative encoding and its applications in facsimile data compression and telemetry, scalar and quantization.

UNIT - 2
Statistical Methods:
Statistical modeling of information source, coding redundancy, variable size codes, prefix codes, Shannon- Fano coding, Huffman coding, adaptive Huffman coding, arithmetic coding and adaptive arithmetic coding, text compression using PPM method.

UNIT - 3
Dictionary Methods:
String compression, sliding window compression, LZ77, LZ78 and LZW algorithms and applications in text compression, zip and Gzip, ARC and Redundancy code.

UNIT - 4
Image Compression:
Lossless techniques of image compression, gray codes, two dimensional image transform, Discrete cosine transform and its application in lossy image compression, quantization, Zig-Zag coding sequences, JPEG and JPEG-LS compression standards, pulse code modulation
and differential pulse code modulation methods of image compression, video compression and MPEG industry standard.

UNIT - 5

Audio Compression:
Digital audio, lossy sound compression, M-law and A-law companding, DPCM and ADPCM audio compression, MPEG audio standard, frequency domain coding, format of compressed data.

UNIT - 6

Conventional Encryption:
Security of information, security attacks, classical techniques, caeser Cipher, block cipher principles, data encryption standard, key generation for DES, block cipher principle, design and modes of operation, S-box design, triple DES with two three keys, introduction to international data encryption algorithm, key distribution.

TEXT/REFERENCE BOOKS

1. Data compression- David Solomon Springer Verlag publication.
3. Introduction to data compression-Khalid Sayood Morgan kaufmann publication.

Course Objectives:
- To provide an overview of an exciting growing field of Big Data analytics.
- To discuss the challenges traditional data mining algorithms face when analyzing Big Data.
- To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map Reduce.
Dr. Babasaheb Ambedkar Technological University, Lonere.

- To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability
- To introduce to the students several types of big data like social media, web graphs and data streams
- To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course Outcomes:
At the end of this course, Students will able to:
1. Explain the motivation for big data systems and identify the main sources of Big Data in the real world.
2. Demonstrate an ability to use frameworks like Hadoop, NOSQL to efficiently store retrieve and process Big Data for Analytics.
3. Implement several Data Intensive tasks using the Map Reduce Paradigm
4. Apply several newer algorithms for Clustering Classifying and finding associations in Big Data.

UNIT - 1

Big Data Platforms

UNIT - 2

UNIT - 3

Fog Computing

UNIT - 4

Web Enhanced Building

UNIT - 5

Technologies for Healthcare

UNIT - 6

Sustainability Data and Analytics

Sustainability Data and Analytics in Cloud-Based M2M Systems - potential stakeholders and their complex relationships to data and analytics applications - Social Networking Analysis - Building a useful understanding of a social network - Leveraging Social Media and IoT to Bootstrap Smart Environments: lightweight Cyber Physical Social Systems - citizen actuation.

TEXT/REFERENCE BOOKS

Course Objectives:
- For secured and under control since the information stored and conveyed is ultimately an invaluable resource of the business.
- The growing number of the computer Network(internet/intranet) attacks and sophistication in attack technologies has made this task still more complicated.
- To update the knowledge of the personnel manning networks and systems on the network security issues and solutions.

Course Outcomes:
Students should be able to understand.
1. The difference between threat, risk, attack and vulnerability.
2. How threats materialize into attacks.
3. Where to find information about threats, vulnerabilities and attacks.
4. Typical threats, attacks and exploits and the motivations behind them.

UNIT - 1

Introduction to Cyber Security

UNIT - 2

Cyber Security Vulnerabilities and Cyber Security Safeguards
UNIT - 3

Securing Web Application, Services and Servers
Introduction, Basic security for HTTP Applications and Services, Basic Security for SOAP Services, Identity Management and Web Services, Authorization Patterns, Security Considerations, Challenges.

UNIT - 4

Intrusion Detection and Prevention

UNIT - 5

Cryptography and Network Security

UNIT - 6

Cyberspace and the Law, Cyber Forensics
Introduction, Cyber Security Regulations, Roles of International Law, the state and Private Sector in Cyberspace, Cyber Security Standards. The INDIAN Cyberspace, National Cyber Security Policy 2013 Introduction to Cyber Forensics, Handling Preliminary Investigations, Controlling an Investigation, Conducting disk-based analysis, Investigating Information-hiding, Scrutinizing E-mail, Validating E-mail header information, Tracing Internet access, Tracing memory in real-time.

TEXT/REFERENCE BOOKS

Dr. Babasaheb Ambedkar Technological University, Lonere.

Course Objectives:
- To acquaint students with the practical knowledge of designing and developing consumer electronic systems and products and introduce the latest trends and technologies.

Course Outcomes:
Students will be able to:
1. List technical specification of electronics Audio system (microphone and speaker)
2. Trouble shoots consumer electronics products like TV, washing machine and AC.
3. Identify and explain working of various color TV transmission blocks.
4. Adjust various controls of color TV receiver and troubleshoot it.
5. Use various functions of Cam coder and shoot a video and take snapshots and save them in appropriate format.

<table>
<thead>
<tr>
<th>BTETPE704A</th>
<th>Consumer Electronics</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

UNIT - 1

Communication devices
Mobile handsets, Android technology, 2G, 3G Mobiles, i-phone, EPABX

UNIT - 2

Mass Communication devices
Color Television, Antenna, HDTV, LCD TV, LED TV, 3D Technology In TV, Interactive TV, DTHTV, Plasma TV, Video Conferencing, FAX Machine, PA System, Dolby Digital Systems, Gesture Technology In TV.

UNIT - 3

Household electronics devices
Washing Machine, Microwave Oven, Types Applications, Electronics Weighing Balance, Air Conditioner, Vacuum Cleaner.
UNIT - 4

Printing and recording devices
LASER printer, Inkjet Printers, Photocopiers, Scanner, DVD/CD Player, Blue ray DVD Player.

UNIT - 5

Special purpose machines

Security devices

UNIT - 6

Compliance:
Product safety and liability issues, standards related to electrical safety and standards related to fire hazards, e.g., UL and VDE. EM1/EMC requirements and design techniques for compliance, e.g. ESD, RF interference and immunity, line current harmonics and mains voltage surge.

TEXT/REFERENCE BOOKS

3. Video demystified - Keith Jack, PI publication
5. Audio and Video System - Principles, maintenance and Troubleshooting by R. Gupta
8. Basic TV & Video Systems - Bernard Grobb.
Course Objectives:
• Introduction to Circuit Simulation & EM Simulations.
• Deep Understanding of MOS Device Physics & Modeling.
• Understanding of few transistor circuits like common gate, common source & common drain amplifiers with their frequency response.
• Understanding of Operational Amplifier Design & Trade-offs.
• Advanced Op-Amps and OTAs.
• Temperature Compensated Biasing Schemes.

Course Outcomes:
After the successful completion of this course, Students will be able to:
1. Describe the models for active devices in MOS and Bipolar IC technologies.
2. Describe layout considerations for active and passive devices in analog ICs.
3. Analyze and design IC current sources and voltage references.
4. Describe the noise sources and models applicable to ICs.
5. Understand and appreciate the importance of noise and distortion in analog circuits.
7. Analyze and design IC operational amplifiers.

UNIT - 1
Introduction to Simulations
UNIT - 2

MOSFET Device Physics & Modeling
MOSFET Structure, Threshold Voltage, Drain Current Equation, Transfer & Output Characteristics, Weak/Moderate/Strong Inversion, Linear/Triode/Saturation Region of Operation, Device Leakages and Losses, Short Channel Effects, High Frequency Small Signal Model of MOSFET, Cubic, BSIM and Materka Models of MOSFET.

UNIT - 3

Few Transistor Circuits

UNIT - 4

Operational Amplifiers & OTAs

UNIT - 5

Biasing Schemes
Voltage and Current References, Vt reference bias, PTAT Current Reference, CTAT and Bandgap Voltage References, High Precision Voltage References, Voltage Level Shifters.

UNIT - 6

Non-Linear Circuits

TEXT/REFERENCE BOOKS

2. Design”, John Wiley & Sons

<table>
<thead>
<tr>
<th>BTETPE704C</th>
<th>Soft Computing</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objectives:
- Introduce a relatively new computing paradigm for creating intelligent machines useful for solving complex real world problems.
- Insight into the tools that make up the soft computing technique: fuzzy logic, artificial neural networks and hybrid systems Techniques.
- To create awareness of the application areas of soft computing technique.
- Provide alternative solutions to the conventional problem solving techniques in image/signal processing, pattern recognition/classification, control system.

Course Outcomes:
After the successful completion of this course, students will be able to:
1. Use a new tool /tools to solve a wide variety of real world problems.
2. Find an alternate solution, which may offer more adaptability, resilience and optimization.
3. Identify the suitable antenna for a given communication system.
4. Gain knowledge of soft computing domain which opens up a whole new career option.
5. Tackle real world research problems.

UNIT - 1

Artificial Neural Network –I:
UNIT - 2

Artificial Neural Network-II:
Multilayer perceptron (MLP) and back propagation algorithm o Application of MLP for classification and regression o Self-organizing Feature Maps, k-means clustering o Learning vector quantization Radial Basis Function networks: Cover’s theorem, mapping functions(Gaussian, Multi-quadrics, Inverse multi quadrics, Application of RBFN for classification and regression o Hopfield network, associative memories.

UNIT - 3

Fuzzy Logic –I:
Concept of Fuzzy number, fuzzy set theory (continuous, discrete) o Operations on fuzzy sets, Fuzzy membership functions (core, boundary, and support), primary and composite linguistic terms, Concept of fuzzy relation, composition operation (T-norm,T-conorm) o Fuzzy if-then rules.

UNIT - 4

Fuzzy Logic –II:

UNIT - 5

Fuzzy Control Systems:
Control system design problem 1.5, Control (Decision) Surface, Assumptions in a Fuzzy Control System Design V, Fuzzy Logic Controllers Soft o Comparison with traditional PID control, advantages of FLC, Architecture of a FLC: Mamdani Type, Example Aircraft landing control problem.

UNIT - 6

Adaptive Neuro-Fuzzy Inference Systems (ANFIS):
ANFIS architecture, Hybrid Learning Algorithm, Advantages and Limitations of ANFIS Application of ANFIS/CANFIS for regression.

TEXT/REFERENCE BOOKS

<table>
<thead>
<tr>
<th>BTETPE704D</th>
<th>Advance Industrial Automation-1</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Course Objectives:

- To identify potential areas for automation and justify need for automation.
- To select suitable major control components required to automate a process or an activity.
To translate and simulate a real time activity using modern tools and discuss the benefits of automation.

Course Outcomes:

After the successful completion of this course, the student will be able:

1. To identify suitable automation hardware for the given application.
2. To recommend appropriate modeling and simulation tool for the given manufacturing application.

UNIT - 1

Introduction:

UNIT - 2

Material handling and Identification Technologies:

UNIT - 3

Automated Manufacturing Systems:

UNIT - 4

Control Technologies in Automation:

UNIT - 5

Computer Based Industrial Control:

UNIT - 6

Modeling and Simulation for Plant Automation:

TEXT/REFERENCE BOOKS

Course Objectives:
- Understand key elements of Mechatronics system, representation into block diagram.
- Understand concept of transfer function, reduction and analysis.
- Understand principles of sensors, its characteristics, interfacing with DAQ microcontroller.
• Understand the concept of PLC system and its ladder programming, and significance of PLC systems in industrial application.
• Understand the system modelling and analysis in time domain and frequency domain.
• Understand control actions such as Proportional, derivative and integral and study its significance in industrial applications.

Course Outcomes:
1. Identification of key elements of mechatronics system and its representation in terms of block diagram.
2. Understanding the concept of signal processing and use of interfacing systems such as ADC, DAC, digital I/O.
3. Interfacing of Sensors, Actuators using appropriate DAQ micro-controller.
4. Time and Frequency domain analysis of system model (for control application).
5. PID control implementation on real time systems.
6. Development of PLC ladder programming and implementation of real life system.

UNIT - 1

Introduction to Sensors & Actuators
Introduction to Mechatronics, Measurement characteristics: -Static and Dynamic Sensors:
Position Sensors: -Potentiometer, LVDT, Encoders; Proximity sensors:-Optical, Inductive, Capacitive; Motion Sensors:-Variable Reluctance; Temperature Sensor: RTD, Thermocouples; Force / Pressure Sensors:-Strain gauges; Flow sensors: -Electromagnetic Actuators: Stepper motor, Servo motor, Solenoids.

UNIT - 2

Block Diagram Representation
Open and Closed loop control system, identification of key elements of mechatronics systems and represent into block diagram (Electro-Mechanical Systems), Concept of transfer function, Block diagram reduction principles, Applications of mechatronics systems:-Household, Automotive, Shop floor (industrial).
UNIT - 3

Data Acquisition & Microcontroller System
Interfacing of Sensors / Actuators to DAQ system, Bit width, Sampling theorem, Aliasing, Sample and hold circuit, Sampling frequency, ADC (Successive Approximation), DAC (R-2R), Current and Voltage Amplifier.

UNIT - 4

PLC
Programming Introduction, Architecture, Ladder Logic programming for different types of logic gates, Latching, Timers, Counter, Practical Examples of Ladder Programming, and Introduction to SCADA system.

UNIT - 5

Modelling and Analysis of Mechatronics System
System modelling (Mechanical, Thermal and Fluid), Stability Analysis via identification of poles and zeros, Time Domain Analysis of System and estimation of Transient characteristics: % Overshoot, damping factor, damping frequency, Rise time, Frequency Domain Analysis of System and Estimation of frequency domain parameters such as Natural Frequency, Damping Frequency and Damping Factor.

UNIT - 6

Control System
P, I and D control actions, P, PI, PD and PID control systems, Transient response:-Percentage overshoot, Rise time, Delay time, Steady state error, PID tuning (manual).

TEXT/REFERENCE BOOKS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTETPE704F</td>
<td>Electronics in Smart City</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:

Course Outcomes:

UNIT - 1

Necessity of SMART CITY

The Smart City Philosophy, Development of Asian Cities, Megacities of India: Current Challenges, The India Story of Smart Cities, Conceptual Basis of a Smart City, Global Smart City Programs, Recommendations for Smart City Framework in GCC.

UNIT - 2

SMART CITY and IOT

Introduction to Internet of Things, applications in smart city & their distinctive advantages - smart environment, smart street light and smart water & waste management. What is an IOT? Role and scope of IOT in present and future marketplace.

UNIT - 3

SMART Objects

Smart objects, Wired – Cables, hubs, etc., Wireless – RFID, WiFi, Bluetooth, etc. Different functional building blocks of IOT architecture

UNIT - 4

Smart Cities: Distributed Intelligence and Central Planning

On the Interplay between Humans and Smart Devices, Theoretical Tools, Intelligence-Artificial Intelligence (Machine Intelligence), Information Dynamics, Synergetic, Information Dynamics and Allometry in Smart Cities.

UNIT - 5

Wireless Protocols for Smart Cities

UNIT - 6

Leveraging Smart City Projects for Benefitting Citizens: The Role of ICTs

Smart City and ICT: Using Technologies to Improve the Citizens’ Quality of Life, Smart City Goals: The Impact on Citizens’ Well-Being and Quality of Life, Critical Dimensions: Urbanization, Local Climate Change, and Energy Poverty, Environmental Issues: The Role of Local and Global Climate Chang.

TEXT/REFERENCE BOOKS

| BTETPE801A | Entrepreneurship Development | 3 Credits |

Course Objectives:

- To Develop and Strengthen Entrepreneurial Quality and Motivation in Students and To Impart Basic Entrepreneurial Skills and Understanding to Run a Business Efficiently and Effectively.
- The students develop and can systematically apply an entrepreneurial way of thinking that will allow them to identify and create business opportunities that may be commercialized successfully.

Course Outcomes:

After the completion of the course, the students will be able to:

1. Have the ability to discern distinct entrepreneurial traits.
2. Know the parameters to assess opportunities and constraints for new business ideas.
3. Understand the systematic process to select and screen a business idea.
4. Design strategies for successful implementation of ideas.
5. Write a business plan.

UNIT - 1

Entrepreneurship
Entrepreneur – Types of Entrepreneurs – Difference Between Entrepreneur And Intrapreneur Entrepreneurship In Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT - 2

Motivation
Major Motives Influencing An Entrepreneur – Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test – Stress Management, Entrepreneurship Development Programs – Need, Objectives.

UNIT - 3

Business

UNIT - 4

UNIT - 5

Financing and Accounting

UNIT - 6

Support to Entrepreneurs
TEXT/REFERENCE BOOKS

BTETPE801B Mixed Signal Design 3 Credits

Course Objectives:
- To introduce how to handle the practical situations where mixed signal analysis is required.
- To analyze and handle the inter-conversions between signals.
- To introduce the students how to design systems involving mixed signals.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the practical situations where mixed signal analysis is required.
2. Analyze and handle the inter-conversions between signals.
3. Design systems involving mixed signals.

UNIT - 1
Analog and discrete-time signal processing, introduction to sampling theory; Analog continuous-time filters: passive and active filters.

UNIT - 2
Basics of analog discrete-time filters and Z-transform.
UNIT - 3

Switched-capacitor filters - Non idealities in switched-capacitor filters, Switched-capacitor filter architectures, Switched-capacitor filter applications.

UNIT - 4

Basics of data converters; Successive approximation ADCs, Dual slope ADCs, Flash ADCs, Pipeline ADCs, Hybrid ADC structures, High-resolution ADCs, DACs.

UNIT - 5

Mixed-signal layout, Interconnects and data transmission, Voltage-mode signaling and data transmission, Current-mode signaling and data transmission.

UNIT - 6

Introduction to frequency synthesizers and synchronization, Basics of PLL, Analog PLLs, Digital PLLs, DLLs.

TEXT/REFERENCE BOOKS

BTETPE801C Bio-medical Signal Processing 3 Credits

Course Objectives:
- To understand the basic signals in the field of biomedical.
- To study origins and characteristics of some of the most commonly used biomedical signals, including ECG, EEG, evoked potentials, and EMG.
To understand Sources and characteristics of noise and artifacts in bio signals.

To understand use of bio signals in diagnosis, patient monitoring and physiological investigation.

To explore research domain in biomedical signal processing.

To explore application of established engineering methods to complex biomedical signal problems.

Course Outcomes:

After successfully completing the course students will be able to:

1. The student will be able to model a biomedical system
2. The student will be able to understand various methods of acquiring bio signals.
3. The student will be able to understand various sources of bio signal distortions and its Remedial techniques
4. The students will be able to analyze ECG and EEG signal with characteristic feature points.
5. The student will have a basic understanding of diagnosing bio-signals and classifying them.

UNIT - 1

Introduction to Biomedical Signals

ECG, EEG, EMG, ENG etc. Event related potentials Biomedical Signal Analysis- Computer Aided Diagnosis. Concurrent, coupled and correlated processes - illustration with case studies. Noise Filtering: Random noise structured noise and physiological interference- noise and artifacts in ECG.

UNIT - 2

Time domain filters and Frequency domain Filters

UNIT - 3

Event Detection

Detection of P, QRS and T waves in ECG- EEG rhythms- Correlation and coherence analysis of EEG channels- Detection of EEG spike and wave complexes-

UNIT - 4

Fourier Spectrum, Estimation of power spectral density
Moments and spectral power ratio. Power Cepstrum- Complex Cepstrum Biomedical applications of Cepstrum analysis.

UNIT - 5

Modeling of Biomedical systems:

UNIT - 6

Pattern classification and diagnostic decision:

TEXT/REFERENCE BOOKS

Course Objectives:

- This Multirate Signal Processing course covers advanced techniques for the design of digital filters, which are essential components in almost every digital signal processing system, as well as cyclostationary signals, so important to the understanding of modulation systems.
- The course then moves on to treat multi-rate systems and presents multi-rate processing of both deterministic and random signals, culminating in a full case study exercise.
- To analyze multi-rate systems and the effects of interpolation and decimation on deterministic signals.
- To analyze the effects of interpolation and decimation on random signals.
- To design interpolation and decimation filters to a given specification.

Course Outcomes:

After successfully completing the course students will have:

1. Ability to understand the concepts of sampling rate conversions, Decimation and Interpolation as part of Signal Processing techniques.
2. Able to explain how the multirate implementation of ADC and DAC converters works.
3. Able to describe basic sampling rate conversion algorithms.
4. Able to draw and describe different kinds of interpolator and decimator.
5. Able to analyze how the interpolated FIR filter works.
6. Able to do sampling rate conversion.

Fundamentals of Multirate Systems

Introduction, Basic multirate operations, Interconnection of building blocks, Polyphase representation, Mulstage implementation, Some application of multirate systems, Special filter and filter banks.
UNIT - 2

Maximally Decimated Filter Banks
Introduction, Errors created in the QMF bank, A simple alias free QMF system, Power symmetric QMF banks, M-channel filter banks, Polyphase representation, Perfect reconstruction system, alias free filter banks, Treestructured filter banks, Transmultiplexer.

UNIT - 3

Paranitary Perfect Reconstruction Filter Banks
Introduction, Lossless transfer matrices, Filter banks properties induced by paraunitariness, Two channel FIR paraunitary QMF banks, Two channel paraunitary QMF lattice, M-channel FIR paraunitary filter banks, Transformcoding and LOT.

UNIT - 4

Linear Phase and Cosine Modulated Filter Banks
Introduction, Some necessary conditions, Lattice structure for linear phase FIR PR banks, formal synthesis of linear phase FIR PR QMF Lattice. Pseudo QMF banks, Design of the pseudo QMF bank, Efficient polyphase structure, Cosine modulated perfect reconstruction system.

UNIT - 5

The Wavelet Transform and its Relation to Multirate Filter Banks
Introduction, Background and outline, Short time fourier transform, The Wavelet transform, DT orthonomal Wavelets, Continuous time orthonormal Wavelet basis.

UNIT - 6

Multidimensional, Multivariable and Lossless Systems

Course Objectives:
- To understand time-frequency nature of the signals.
- To introduce the students how wavelets can be applied on the signals.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand time-frequency nature of the signals.
2. Apply the concept of wavelets to practical problems.
3. Mathematically analyze the systems or process the signals using appropriate wavelet functions.

Introduction
Introduction to time frequency analysis; the how, what and why about wavelets, Short-time Fourier transform.

Continuous and Discrete Wavelet Transform
Wigner-Ville transform, Continuous time wavelet transform, discrete wavelet transform.

Construction of Wavelets
Tiling of the time-frequency plane and wave packet analysis, Construction of wavelets.
UNIT - 4

Multi Resolution Analysis

Multi resolution analysis, Introduction to frames and biorthogonal wavelets.

UNIT - 5

Filter Bank Theory

Multirate signal processing and filter bank theory.

UNIT - 6

Applications

Application of wavelet theory to signal denoising, image and video compression, multi-tone digital communication, transient detection.

<table>
<thead>
<tr>
<th>TEXT/REFERENCE BOOKS</th>
</tr>
</thead>
</table>
Course Objectives:

- To provide an overview of Mobile Communication Networks area and its applications in communication engineering.
- To appreciate the contribution of mobile communication networks to overall technological growth.
- To explain the various terminology, principles, devices, schemes, concepts, algorithms and different methodologies used in Mobile Communication Networks.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

1. Understand the working principles of the mobile communication systems.
2. Understand the relation between the user features and underlying technology.
3. Analyze mobile communication systems for improved performance.

UNIT - 1

Cellular concepts

Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Overview of 2G and 3G cellular standards.

UNIT - 2

Signal propagation

Propagation mechanism- reflection, refraction, diffraction and scattering, large scale signal propagation and lognormal shadowing. Fading channels-Multipath and small scale fading-Doppler shift, statistical multipath channel models, narrowband and wideband fading models, power delay profile, average and rms delay spread, coherence bandwidth and coherence time,
flat and frequency selective fading, slow and fast fading, average fade duration and level crossing rate, Capacity of flat and frequency selective channels.

UNIT - 3

Antennas
Antennas for mobile terminal- monopole antennas, PIFA, base station antennas and arrays

UNIT - 4

Multiple access schemes
FDMA, TDMA, CDMA and SDMA, Modulation schemes- BPSK, QPSK and variants, QAM, MSK and GMSK, multicarrier modulation, OFDM

UNIT - 5

Receiver structure
Diversity receivers- selection and MRC receivers, RAKE receiver, equalization: linear-ZFE and adaptive, DFE. Transmit diversity-Altamonte scheme, MIMO and space time signal processing, spatial multiplexing, diversity/multiplexing tradeoff

UNIT - 6

Performance measures
Outage, average SNR, average symbol/bit error rate, System examples- GSM, EDGE, GPRS, IS-95, CDMA 2000 and WCDMA.

TEXT/REFERENCE BOOKS

Course Objectives:
- Maximizing the efficiency of planning and decision making
- Integrating information from multiple sources

Course Outcomes:
At the end of the course, students will be able to map, analyze, manipulate and store geographical data in order to provide solutions to real world problems and help in planning for the future.

UNIT - 1

Introduction to Geo-informatics
Introduction to GIS, History of GIS, Early developments in GIS, Applications of GIS.

UNIT - 2

Maps and Projection

UNIT - 3

Spatial DBMS and Data Models
Introduction, Data Storage, Database Structure Models, Database Management system, Entity Relationship Model, Normalization, GIS Data Model, Vector Data Structure, Raster Data structure, Geo-database and metadata.

UNIT - 4

Spatial Data Analysis
Primary Data, Secondary Data, Data Editing, Introduction to spatial analysis, Vector Operations and Analysis, Network Analysis, Raster Data Spatial Analysis

UNIT - 5

Cartographic Principles and Design
Introduction, Map layout, Data presentation, Toposheet Indexing, Distribution Maps.
UNIT - 6

Interpolation and Web GIS

Introduction to Interpolation, Global Methods of Interpolation, Local Methods of Interpolation, Introduction to Web GIS, OGC Standards and services.

TEXT/REFERENCE BOOKS

Course Objectives:

- The objective of this course is to provide knowledge of fundamental and state-of-the-art concepts in software defined radio.
- To understand the various components of software-defined-radios with the understanding of their limitation and application of ‘software-defined-solutions’ to overcome such limitations.
- To Understanding the interplay of analog and digital signal processing for power as well as spectrum efficient transmission and reception of signal leads to an optimized, yet, practical radio solution.
Course Outcomes:

1. The student will study Needs, Characteristics, Benefits and Design Principles of a Software Radio.
2. The student will be study design aspects of software radios.
3. The student will understand concept of Smart Antennas.
4. The student will study key hardware elements and related Trade-Offs.

UNIT - 1

Fundamentals of SDR:
Software Radios, Needs, Characteristics, Benefits, Design Principles of a Software Radio, Radio frequency implementation issues, Principal Challenge of Receiver Design

UNIT - 2

RF and SDR:
RF Receiver Front-End Topologies, Enhanced Flexibility of the RF Chain with Software Radios, Transmitter Architectures and their issues, Noise and Distortion in the RF Chain, Timing Recovery in Digital Receivers Using Multirate Digital Filters

UNIT - 3

Signals in SDR:
Approaches to Direct Digital Synthesis, Analysis of Spurious Signals, Spurious Components due to Periodic Jitter, Band-pass Signal Generation, Hybrid DDS-PLL Systems, Generation of Random Sequences, Parameters of data converters

UNIT - 4

Smart Antennas:
Concept of Smart Antennas, Structures for Beam-forming Systems, Smart Antenna Algorithms, Digital hardware choices, Key Hardware Elements, DSP Processors, Field Programmable Gate Arrays, Trade-Offs in Using DSPs, FPGAs and ASICs.

UNIT - 5

Case studies in Radio System:
Power Management Issues, Object-oriented representation of radios and network resources, Mobile Application Environments, Joint Tactical Radio System, Case studies in software radio design.

| BTETPE802E | Under Water Signal Processing | 3 Credits |
Course Objectives:
The trend in the Industry for automation is changing one and student will able to develop the skill set for latest development of automation.

Course Outcomes:
1. Select & identify suitable automation hardware for the given application.
2. Describe & explain potential areas of automation.
3. Differentiate various control aspects of automation.
4. Demonstrate the self-learning capability of Industrial Automation.

UNIT - 1

Control panel designing:
Different types of panels, basic components to be installed in a panel, wiring details of panel, specification and physical dimension of components, earthing and cabling of panels-standard procedures, P&I diagram preparation.

UNIT - 2

Supervisory control and data acquisition (SCADA):
SCADA Packages, role of SCADA in industrial automation, SCADA system configuration, RTU communication protocols, script writing, real And historical trend, configuring alarm, real time project development with PLC interfacing, communication with other software, recipe management, accessing different security levels. Report generation of current plant.

UNIT - 3

Pneumatics:
Physical fundamentals of Pneumatics, Function and application of pneumatic components, Designation and drawing of pneumatic symbols, Drawing pneumatic circuit diagrams in accordance with standards. Direct and indirect stroke-dependent control systems Shutoff valves, Logical Elements, Time-dependent control systems with time delay valve, Pressure-dependent control systems with pressure sequence valves. Electro pneumatic :Function & use of electrical & electro pneumatic components such as switches, pushbuttons & solenoid valves, pneumatic symbols, Development of circuit
Diagrams, Direct & indirect activation of cylinder, Logics, Position control circuits, Exercises.

UNIT - 4

Hydraulics:

UNIT - 5

Industrial Control Application:
Cement Plants: Objective of automation system, Automation strategy, Distributed control system for cement plants, Thermal power plant: Automation strategy, Distributed system structure for cement plants, Man-machine interface, software system. Water Treatment Plant: Automation strategy, Distributed digital control, Irrigation Canal automation: Automation strategy, Decision support system at central computer.

UNIT - 6

Project Management
Design concept, kickoff meeting, Design: BOM, control panel, power flow diagram
Dough Maker, yogurt mixer, carton sorting, safety in automation.

TEXT/REFERENCE BOOKS

2. Pneumatic controls by Joji P. (Author), Wiley India Publications.
Course Objectives:
- To introduce how to handle the practical situations where mixed signal analysis is required.
- To analyze and handle the inter-conversions between signals.
- To introduce the students how to design systems involving mixed signals.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the practical situations where mixed signal analysis is required.
2. Analyze and handle the inter-conversions between signals.
3. Design systems involving mixed signals.

UNIT - 1
Embedded Software, Firmware Concepts and Design
Embedded C-programming concepts (from embedded system point of view): Optimizing for Speed/Memory needs, Interrupt service routines, macros, functions, modifiers, data types, device drivers, Multithreading programming. (Laboratory work on J2ME Java mobile application). Basic embedded C programs/applications for ARM-v7, using ARM-GCC-toolchain, Emulation of ARM-v7 (e.g. using QEMU), and Linux porting on ARM-v7 (emulation) board, Real time operating system: POSIX Compliance, Need of RTOS in Embedded system software, Foreground/Background systems, multitasking, context switching, IPC, Scheduler policies, Architecture of kernel, task scheduler, ISR, Semaphores, mailbox, message queues, pipes, events, timers, memory management, RTOS services in contrast with traditional OS. Introduction to μCOS-II RTOS, study of kernel structure of μCOS-II, Synchronization in μCOS-II, Inter-task communication in μCOS-II, Memory management in μCOS-II, porting of RTOS on ARM-v7 (emulation) board, Application developments using μCOSII.

UNIT - 2
Simulation, Testing and Debugging Methodology and Tools
GNU Debugger (gdb), Boundary-Scan/JTAG interface concepts, Black-box, White-box testing, Hardware emulation, logic analyzer
UNIT - 3

Embedded System Designing

Requirement analysis, Hardware blocks diagram, System model (like FSM, UML), Software architectures (modules, drivers), and Component/hardware selection, covering following cases: Hard real time/ Mission critical: Missile, Car cruise control, medical monitoring systems, process control system (temp, pressure) Soft real time: Automated vending machines, digital camera, media-player. Communication: Embedded web servers, routers, Wireless (sensor) networks.

UNIT - 4

Introduction to IoT

UNIT - 5

Introduction to programming

Introduction to Python programming, Introduction to Raspberry Pi, Implementation of IoT with Raspberry Pi, Introduction to SDN, SDN for IoT.

UNIT - 6

Applications

Case Study: Smart Cities and Smart Homes, Smart Grid, Agriculture, Healthcare, Activity Monitoring.

TEXT/REFERENCE BOOKS

2. Frank Vahid - Embedded Systems, Wiley India, 2002
3. ARM System-on-Chip Architecture, Steve Furber - Pearson 2005
5. DR.K.V.K.K. Prasad - Embedded / real time system, Dreamtech
6. Iyer, Gupta - Embedded real systems Programming, TMH
Dr. Babasaheb Ambedkar Technological University, Lonere.

7. Embedded systems software primer, David Simon - Pearson
8. ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, 2005
9. LPC2148 Data Sheets www.arm.com
11. MSP430 architectural manual.

| BTETOE803C | Industrial Drives and control | 3 Credits |

Course Objectives:

- To expose the students to the Engineering fundamentals of various Drives and its control, Dynamic operation and their Applications.

Course Outcomes:

At the end of the course, students will demonstrate the ability to gain an ability to design and conduct performance experiments, as well as to identify, formulate and solve drives related problems.

UNIT - 1

Electrical Drives:

Selection of Motor Power Rating:
Thermal Model of Motor for Heating and Cooling, Classes of Motor Rating, Determination of Motor Rating.

Control of Electrical Drives:
Modes of Operation, Speed Control, Drive Classification, and Closed loop Control of Drives

DC Drives:
Review of Speed Torque relations for Shunt, Series and Separately excited Motors, Review of Starting, Braking (Regenerative, Dynamic, Plugging), Review of Speed control, Controlled rectifier fed DC drives (separately excited only): Single phase fully-controlled Rectifier, Single phase Half controlled Rectifier, Three phase fully-controlled Rectifier, Three phase Half-controlled Rectifier, Dual Converter Control, Chopper Control – Motoring and Braking of separately excited and Series Motor. (No numerical from this module).

AC Drives:
Induction Motor drives, Review of Speed-Torque relations, Review of Starting methods, Braking (Regenerative, Plugging and AC dynamic braking), Transient Analysis, Speed Control: Stator voltage control, Variable frequency control from voltage source, Static Rotor Resistance control, Slip Power Recovery - Static Scherbius Drive, Review of d-q model of Induction Motor, Principle of Vector Control, Block diagram of Direct Vector Control Scheme, Comparison of Scalar control and Vector control, Basic Principle of Direct Torque Control (block diagram) of induction motor. Introduction to Synchronous Motor Variable Speed drives.
UNIT - 6

Special Motor Drives:
Stepper Motor drives- Types, Torque vs. Stepping rate characteristics, Drive circuits, Introduction to Switched reluctance motor drives and Brushless DC motor drives.

TEXT/REFERENCE BOOKS

1. Fundamentals of Electrical Drives by G. K. Dubey, Narosa Publication
5. Special Electrical Machines by E.G. Janardanan, PHI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTETOE803D</td>
<td>Robotics Design</td>
<td>3 credits</td>
</tr>
</tbody>
</table>

Course Objectives:
- To prepare students with basics of robotics
- To familiarize students with kinematics & dynamics of robots
- To familiarize students with path & Trajectory planning of robots
- To familiarize students with robot vision

Course Outcomes:
At the end of the course, students will demonstrate the ability to:

1. Describe kinematics and dynamics of stationary and mobile robots
2. Describe trajectory planning for robots.
3. Implement trajectory generation and path planning various algorithms
4. Work in interdisciplinary projects.
Fundamentals of Robotics
Robot Classification, Robot Components, Degrees of freedom, Joints, Coordinates, Coordinate frames, workspace, applications.

UNIT - 2

Forward & Inverse Kinematics of Robots
Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation, Denavit-Hartenberg representation of forward kinematics, Inverse kinematic solutions, Case studies

UNIT - 3

Velocity Kinematics & Dynamics

UNIT - 4

Robot Motion Planning
Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug

UNIT - 5

Potential Functions and Visibility Graphs
Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation potential functions, Visibility map, Generalized Voronoi diagrams and graphs, Silhouette methods

UNIT - 6

Trajectory planning
Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories.

Robot Vision Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform.

Course Objectives:

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

UNIT - 1

Introduction to Block chain

History: Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, and Privacy.

UNIT - 2
Block chain Architecture and Design
Basic crypto primitives: Hash, Signature, Hash chain to Block chain, Basic consensus mechanisms

UNIT - 3

Consensus
Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of Block chain consensus protocols, Permissioned Block chains: Design goals, Consensus protocols for Permissioned Block chains

UNIT - 4

Hyperledger Fabric
Hyperledger Fabric I: Decomposing the consensus process, Hyperledger fabric components, Chain code Design and Implementation
Hyperledger Fabric II: Beyond Chain code: fabric SDK and Front End, Hyperledger composer tool

UNIT - 5

Use Cases
Use case II: Block chain in tradesupply chain: Provenance of goods, visibility, trade supply chain finance, invoice managementdiscounting, etc
Use case III: Block chain for Government: Digital identity, land records and other kinds of record keeping between government entities, public distribution system social welfare systems

UNIT - 6

Blockchain Cryptography Privacy and Security on Blockchain
Research aspects I: Scalability of Block chain consensus protocols, Case Study “Various recent works on scalability,
Research aspects II: Secure cryptographic protocols on Block chain, Case Study “Secured Multi-party Computation, Block chain for science: making better use of the data-mining network, Case Studies: Comparing Ecosystems - Bitcoin, Hyperledger, Ethereum and more

TEXT/REFERENCE BOOKS

1. Mastering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos
2. Blockchain by Melanie Swa, O'Reilly