It is hereby informed to all concerned that, the syllabi prepared by the Board of Studies & recommended by the Dean, Faculty of Science & Technology the Academic Council at its meeting held on 30 June & 02 July 2018 has accepted the following syllabi in accordance with Choice Based Credits & Grading System for all Branches Third Year Engineering & Second Year of Bachelor of Architecture under the Faculty of Science & Technology as enclosed herewith:

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Syllabi as per CBC & GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Third Year B.E.[Civil Engineering],</td>
</tr>
<tr>
<td>[4]</td>
<td>Third Year B.E [Chemical Engineering],</td>
</tr>
<tr>
<td>[5]</td>
<td>Third Year B.E [Instrumentation Engineering],</td>
</tr>
<tr>
<td>[8]</td>
<td>Second Year of Bachelor of Architecture.</td>
</tr>
</tbody>
</table>

This is effective from the Academic Year 2018-2019 and onwards.

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information and necessary action.

University Campus,
Aurangabad-431 004.
Ref.No.SU/2018/
Date:- 03-07-2018. / 10497 - 03

Copy forwarded with compliments to :-
1] The Principals, affiliated concerned Colleges, Dr. Babasaheb Ambedkar Marathwada University.
2] The Director, University Network & Information Centre, UNIC, with a request to upload this Circular on University Website.

Copy to :-
1] The Director, Board of Examinations & Evaluation,
2] The Section Officer, [Engineering Unit] Examination Branch,
3] The Section officer, [Eligibility Unit],
4] The Programmer [Computer Unit-1] Examinations,
5] The Programmer [Computer Unit-2] Examinations,
6] The In-charge, [E-Suvidha Kendra],
7] The Public Relation Officer,
8] The Record Keeper,
Curriculum under Choice Based Credit & Grading System

Revised Syllabus of

Bachelor of Engineering

Third Year

Computer Science & Engineering/IT

Under the Faculty of Science & Technology

[Effective from the Academic Year 2018-19 & onwards/-]
<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Semester-I</th>
<th>Contact Hrs/Week</th>
<th>Examination Scheme</th>
<th>Duration of The Theory Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject</td>
<td>L T P</td>
<td>Total</td>
<td>CT</td>
</tr>
<tr>
<td>CSE301</td>
<td>Operating Systems</td>
<td>4 -- --</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>CSE302</td>
<td>Theory of Computation</td>
<td>4 -- --</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>CSE303</td>
<td>Database Management Systems</td>
<td>4 -- --</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>CSE304</td>
<td>Programming in JAVA</td>
<td>4 -- --</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>CSE341</td>
<td>Elective –I</td>
<td>4 -- --</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>CSE321</td>
<td>Lab 1: Database Management Systems</td>
<td>-- -- 2 2</td>
<td>-- -- --</td>
<td>50</td>
</tr>
<tr>
<td>CSE322</td>
<td>Lab 2: Programming in JAVA</td>
<td>-- -- 2 2</td>
<td>-- -- --</td>
<td>50</td>
</tr>
<tr>
<td>CSE323</td>
<td>Lab 3: Elective –I</td>
<td>-- -- 2 2</td>
<td>-- -- --</td>
<td>50</td>
</tr>
<tr>
<td>CSE324</td>
<td>Lab 4: Software Development Lab-I (ASP.NET using C#)</td>
<td>-- 2 2</td>
<td>-- -- --</td>
<td>50</td>
</tr>
<tr>
<td>CSE325</td>
<td>Communication Skills-II</td>
<td>2 -- --</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>BSH305</td>
<td>Total</td>
<td>22 -- 8</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>
PART - II

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>CT</th>
<th>TH</th>
<th>TW</th>
<th>PR</th>
<th>Total</th>
<th>Credits</th>
<th>Duration of The Theory Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE351</td>
<td>Advanced JAVA</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>4</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>CSE352</td>
<td>Software Engineering</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>4</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>CSE353</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>4</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>ITD354</td>
<td>Ebusiness Systems (For IT)</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>4</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>CSE354</td>
<td>Systems Programming (For CSE)</td>
<td></td>
</tr>
<tr>
<td>CSE391</td>
<td>Elective-II</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>20</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>4</td>
<td>3 Hrs</td>
</tr>
<tr>
<td>CSE392</td>
<td></td>
</tr>
<tr>
<td>CSE393</td>
<td></td>
</tr>
<tr>
<td>CSE371</td>
<td>Lab 5: Advanced JAVA</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>CSE372</td>
<td>Lab 6: Software Testing & Quality Analysis</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>CSE373</td>
<td>Lab 7: Design and Analysis of Algorithms</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>CSE374</td>
<td></td>
</tr>
<tr>
<td>CSE375</td>
<td>Lab 8 Elective-II</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>CSE376</td>
<td></td>
</tr>
<tr>
<td>CSE377</td>
<td>Lab 9 SDL-II (Android)</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Total of Semester II</td>
<td></td>
<td>20</td>
<td>--</td>
<td>12</td>
<td>32</td>
<td>100</td>
<td>400</td>
<td>100</td>
<td>150</td>
<td>750</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Total of Semester I & II</td>
<td></td>
<td>42</td>
<td>--</td>
<td>20</td>
<td>62</td>
<td>200</td>
<td>800</td>
<td>200</td>
<td>300</td>
<td>1500</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

Elective I & II:

<table>
<thead>
<tr>
<th>Code</th>
<th>Elective - I</th>
<th>Code</th>
<th>Elective - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE341</td>
<td>Computer Network Architecture and Protocols</td>
<td>CSE391</td>
<td>Distributed Operating System</td>
</tr>
<tr>
<td>CSE342</td>
<td>Digital Image Processing</td>
<td>CSE392</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CSE343</td>
<td>Embedded Systems</td>
<td>CSE393</td>
<td>Network Security</td>
</tr>
</tbody>
</table>

L: Lecture hours per week, *T*: Tutorial hours per week, *P*: Practical hours per week, *CT*: Class Test,

Prerequisite:
1: Understanding of data structures and digital electronics,
2: Knowledge of basic computer, hardware components, microprocessor and peripheral components.
3: Programming skills in C, C++.

Objectives:
1. Students should learn fundamentals which will help them to understand design of modern operating system.
2. To study different components of OS.
3. Students should have overview of different types and structures of OS.
4. Should learn important system resources and their management policies.

CONTENTS

SECTION A

Unit 1: Introduction (6 hrs)
- Operating System as an extended machine, OS as a resource manager.
- History of operating system: Generations- batch system, multiprogramming, time sharing, multitasking, distributed, handheld computer system, embedded OS, real time OS and smart OS. Computer hardware review. OS concepts.
- Operating system structure: monolithic, layered systems, microkernel, client server models, virtual machines, exokernels, mainframe OS. System calls.
- Comparison of Linux, Windows, DOS

Unit 2: Process management (8 hrs)
- THREAD: process and thread, thread functionality, user level and kernel level threads.
- Interprocess Communication: race condition, critical regions, mutual exclusion with busy waiting, sleep and wakeup, Producer consumer problem, semaphore, message passing, Monitors
- Classical IPC Problem: Dining philosopher problems, Readers and writers problems.
• Process Scheduling, scheduling criteria, scheduling algorithms.

Unit 3: File systems (6 hrs)
• Files: File Naming, File Types, Access, File operations,
• Directories: Types, Operations.
• File System Implementation: Layout, Implementation Files and directories.
• File system management: Disk space management, File system consistency.
• Comparison of Linux and windows file systems

SECTION B

Unit 4: Memory management (8 hrs)
• Memory management strategies: Basic Hardware, Address binding, Logical vs Physical Address space, Swapping, contiguous memory allocation.
• Memory partitioning: fixed, dynamic partitioning, buddy system reallocation, fragmentation.
• Managing free memory: memory management with bitmap, linked list.
• Virtual memory: demand paging, page replacement algorithms- options, FIFO, LRU, allocations of frames, thrashing and working set models.
• Paging: Basic method, hardware support, structure of page table.
• Segmentation: Basic method, hardware

Unit 5: Device management (6 hrs)
• Principles of I/O hardware: I/O device controllers
• Principles of I/O software.
• I/O software layers
• Disk: disk hardware-magnetic disk, RAID, CDs, DVDs, Disk formatting, disk scheduling algorithms, clocks

Unit 6: Deadlock Management (6 hrs)
Deadlock:
• Introduction to deadlocks: Resources- Types and resource acquisition. Conditions for resource deadlock, Deadlock Modelling.
• Deadlock detection and recovery with one resource and multiple resources.
• Deadlock avoidance:- Resource trajectories, safe & unsafe states, bankers algorithm for single and multiple resources
• Deadlock Prevention.

Text Books:
Reference Book:

Links:
3. Memory management requirements & Memory partitioning: http://dinus.ac.id/repository/docs/ajar/Operating_System.pdf

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions.
2. Five questions in each section.
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Prerequisite:
1. Discrete mathematics

Objectives:
1. To introduce the fundamental concepts of formal languages, grammars and automata theory.
2. To study and develop fundamentals for computational theory.
3. To apply abstract models for solving problems in computing.
4. To understand the differences between decidability and undecidability.

CONTENTS

SECTION A

Unit 1: Finite Automata (8 hrs)
Introduction to Finite Automata, Structural representation, Automata and complexity. Chomsky Classification of languages, Central Concepts of Automata Theory, Deterministic Finite Automata, Nondeterministic Finite automata, FA with epsilon transitions, Applications of FA, FA with output : Moore and Mealy machine

Unit 2: Regular Expressions and Languages (8 hrs)
Regular Expressions, Finite automata and Regular Expression, Algebraic laws for RE, Ardens theorem, Pumping lemma for Regular languages, Applications of pumping lemma, Closure and Design properties of regular languages, Equivalence and minimization of Automata, Applications of Regular Expressions.

Unit 3: Context Free Grammars and Languages (4 hrs)
Context Free Grammars, Parse trees, Applications of CFG, Ambiguity in grammars and languages, Normal Forms for CFG: Chomsky Normal Form

SECTION B

Unit 4: Pushdown Automata and LBA (8 hrs)
Pushdown Automata – Definition, Languages of PDA, Acceptance by Empty Stack and Final State, Equivalence of PDA and CFG, Deterministic Pushdown Automata, Pumping lemma for CFL, The model of linear bounded Automata.

Unit 5: Turing Machine (8 hrs)
The Turing machine – Notation for TM, Instantaneous description for TM, Transition diagram for TM, The language of a TM, Design of Turing Machines, Church Turing Thesis, TM and halting, Extensions to the basic TM: Multitape TM, Nondeterministic TM, Universal TM.

Unit 6: Decidability and Undecidability (4 hrs)
Decidable problems, Decidable problems concerning Regular Language, Undecidable Problems, Simple Un-decidable Problem: Post Correspondence Problem, Intractable Problems: Classes P and NP.

Text Books:

Reference Books:

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions.
2. Five questions in each section.
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF SCIENCE AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – I

Course Code: CSE303 Title: Database Management System
Teaching Scheme Examination Scheme
Theory: 04 Hours/Week Class Test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisites:
1. Programming Concepts
2. Discrete Mathematics
3. Object Oriented Programming

Objectives:
1. To understand the different issues in the design and implementation of a database system
2. To design and build simple database systems
3. To retrieve information efficiently and effectively from database

CONTENTS

SECTION-A

Unit 1: Introduction (06 hrs)
• DBMS and Database System Applications
• Purpose of Database Systems
• View of Data
 • Data Abstraction
 • Instances and Schemas
 • Data Models
• Database Languages
 • DDL, DML
• Database Architecture
• Database Users and Administrators
• History of Database Systems.

Unit 2: Introduction to Database Design (08 hrs)
• Database Design and ER diagrams
 • Beyond ER Design
• Entities, Attributes And Entity sets
• Relationships and Relationship sets
• Additional features of ER Model
• Key Constraints
• Participation Constraints
• Weak Entities
• Class Hierarchies
• Aggregation
• Conceptual Design with the ER Model
 • Entity versus Attribute
 • Entity versus Relationship
 • Binary versus Ternary Relationships
 • Aggregation versus Ternary Relationships
• Case Study : The Internet Shop

Unit 3: Relational Model (06 hrs)
• Relational Model Concepts
 • Domains, Attributes, Tuples and Relations
 • Characteristics of Relations
• Relational Model Constraints
 • Domain Constraints
 • Key Constraints and Constraints on Null Values
 • Relational Databases and Relational Database Schemas
 • Entity Integrity, Referential Integrity and Foreign Keys
• Relational Database Design Using ER-to-Relational Mapping

SECTION-B
Unit 4: Relational Algebra and SQL (06 hrs)
• Relational Algebra
 • Selection and Projection
 • Set operations
 • Renaming
 • Joins
 • Examples of Algebra Queries
• SQL
 • SQL Data Definition
 • Specifying Constraints in SQL
 • Form of Basic SQL Query
 • Joins
 • Nested Queries
 • Aggregate Operators
 • NULL values
 • Views
 • Active Databases
Unit 5: Functional Dependencies and Normalization (06 hrs)
- Functional Dependencies
 - Definition of Functional Dependency
 - Inference Rules for Functional Dependencies
 - Equivalence of Sets of Functional Dependencies
 - Minimal Sets of Functional Dependencies
- Normal Forms based on Primary Keys
- General Definitions of Second and Third Normal Forms
- Boyce-Codd Normal Form
- Properties for Relational Decompositions
- Multi-valued Dependencies and 4NF
- Join Dependencies and 5NF

Unit 6: Transaction Management (08 hrs)
- Transaction Support
 - Properties of Transactions
- Concurrency Control
 - The Need for Concurrency Control
 - Serializability and Recoverability
 - Locking Methods
 - Deadlock
 - Timestamping Methods
- Database Recovery
 - The Need for Recovery
 - Transactions and Recovery
 - Recovery Facilities
 - Recovery Techniques

Text Books:

Reference Books:
PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Course Code: CSE304
Teaching Scheme
Theory: 4 Hours/Week

Title: Programming in Java
Examination Scheme
Class Test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite:
1. Basics of programming languages.

Objectives:
The students will be able to:
1. Apply object oriented features to real time entities.
2. Handle exceptions & implement multithreaded programs.
3. Implement database programming.
4. Design & implement GUI with event handling
5. Develop I/O & networking programs.

CONTENTS

SECTION-A

Unit 1: Introduction (8 Hours)
- Features of Java, Java Virtual Machine, Byte Code, JIT Compiler
- Class fundamentals, Declaring objects, Nested and Inner Classes, Introducing Methods, Constructors, Garbage Collection
- Overloading Methods, Using Objects as Parameters, Returning Objects, Access Control, Understanding static & final keyword,
- Inheritance Basics, Using Super, Method Overriding, Abstract Classes, Using final keyword with inheritance
- Arrays, Vectors, Strings, Wrapper classes
- Using Command-Line Arguments

Unit 2: Packages & interfaces (6 Hours)
- Packages: Defining a Package, Finding Packages and CLASSPATH, A Short Package Example, Access Protection, Importing Packages
• Study of java.lang & java.util packages
• **Interfaces:** Defining an Interface, Implementing Interfaces, Variables in Interfaces, Extending Interfaces,
• Multiple Inheritance

Unit 3: Exception Handling & Multithreaded Programming (6 Hours)
• Exception handling fundamentals, Exception Types, Using try-catch, Multiple try-catch clauses, Nested try statements, throw, throws, finally, Built-in Exceptions, creating your own exception subclasses
• The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, synchronization, Suspending, Resuming, and Stopping Threads

SECTION-B

Unit 4: Java Database Connectivity (4 Hours)
• Introduction, Types of JDBC Drivers, Driver interface & DriverManager class, Connection Interface, Statement Interface, PreparedStatement, ResultSet,
• JDBC Program for executing Statements & processing ResultSet, Using PreparedStatement

Unit 5: Applet, Event Handling and AWT (10 Hours)
• **Applet:** Applet Basics, An Applet Skeleton, Simple Applet Display Methods, Using the Status Window, The HTML APPLET Tag, Passing Parameters to Applets
• **Event Handling:** The Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Handling Mouse and Keyboard Events, Adapter Classes
• Introduction to AWT, AWT classes, Window, Creating a Frame Window in an Applet, Working with Graphics

Unit 6: Input /Output & Networking (6 Hours)
• **Input /Output:** I/O Basics, Reading Console Input, Writing Console Output, The PrintWriter Class, Reading and Writing Files, The Stream Classes, The Byte Streams, The Character Streams, Object Serialization & deserialization
• **Networking:** Networking Basics, The Networking Classes and Interfaces, TCP/IP Client Sockets, TCP/IP Server Sockets, Datagrams

Text / Reference Books:
2. Steven Holzner, Java 2 Black Book, DreamTech Press
3. Deitel & Deitel, Java: How to Program, PHI
4. Bert Bates, Kathy Sierra, Head First Java, O'Reilly Media, Inc.
5. E Balagurusamy, Programming with Java, Tata Mc Graw Hill
PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each
Course Code: CSE341 Title: Computer Network Architecture and Protocols (Elective-I)
Teaching Scheme
Theory: 04 Hours/Week

Prerequisite:
1. Computer fundamentals
2. Computer Networks

Objectives:
1. To understand fundamental concepts of computer networking and functionality of layered network architecture.
2. To understand wireless and mobile networking concepts.
3. To apply networking concepts to various situations, classifying networks, analyzing performance of computer network infrastructure.

Contents

SECTION-A

Unit I: Network Layer (6 Hrs)
Design issues, IPv4, Problems with IPv4, strategies to bridge the limitations (IP subnetting, CIDR, DHCP, NAT), Network design with CIDR, IPv6.

Unit II: Network Layer Protocols (6 Hrs)
Routing algorithms: Unicast protocols: RIP, EIGRP, OSPF, BGP and multicast routing protocols, ICMP, IGMP, DHCP

Unit III: Transport Layer Protocols (8 Hrs)
Services, Transport layer protocols, UDP, TCP, SCTP: State Transition diagram, flow control, error control, socket programming.

SECTION-B

Unit IV: ATM Networks (8 Hrs) Design goals, Problems, Architecture and ATM Switching, ATM layers, Congestion Control and Quality of Service, ATM LAN’s, LAN Architecture, LAN Emulation client server model
Unit V: Wireless Networks and Protocols (6 Hrs)

Unit VI: Applications (6 Hrs)
Traditional Applications Telnet, SSH, SNMP: SMI, MIB, Multimedia: RTP, RTTP, VOIP, SIP, H.323.

Text Books:

Reference Books:

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Prerequisite:
The Students should have knowledge of
1. Elements of visual perception
2. Basic linear algebra and Fourier transform
3. The sampling theorem, quantization.
4. Set theory

Objectives:
1. Students should be able to understand digital image processing beyond the fundamental level.
2. To study complete digital image processing steps.
3. Students should be able to choose appropriate image processing algorithm to achieve desired result.
4. Students should be able to properly implement DIP algorithms using modern computing tools such as MATLAB, interpret and present the results.

CONTENTS

SECTION-A

Unit 1: Digital Image Fundamentals (08 Hours)
• Introduction: Image, Pixel, Digital image
• Fundamental Steps and Components of Digital Image Processing
• Brightness adaption and discrimination
• Image sensing and Acquisition
• Image Sampling and Quantization: Basic Concepts in Sampling and Quantization, Representing Digital images, Spatial and intensity resolution
• Relationships between pixels: Neighbors of a Pixel, Adjacency, Connectivity, Regions and Boundaries, Distance Measures.
• Basic Intensity Transformation: Image Negatives, Log transformation, Power law Transformation, Piecewise Linear Transformation
• Histogram processing: Definition, Histogram Equalization
• Image Transforms: Discrete Fourier transform(DFT), DCT, Walsh Hadamard Transform.
Unit 2: Image Enhancement (06 Hours)
Spatial Domain Methods:
- Fundamentals of Spatial Filtering: Mechanics of Spatial Filtering, Generating Spatial Filter Masks
- Noise Model
- Smoothing Spatial Filters: Linear filters – Mean filters, Non-linear (Order Statistic) spatial filters: Median, Mode, Max, Min filters
- Sharpening spatial Filters: Foundation, Using First Order Derivatives for image sharpening – The Gradient, Using Second Order Derivatives for image sharpening – The Laplacian, Unsharp Masking, High-Boost Filtering

Frequency Domain Methods:
- Image Enhancement by Frequency domain methods: Basic steps for filtering in Frequency Domain.
- Frequency Domain low pass (Smoothing) and high pass (Sharpening) Filters

Unit 3: Image Compression (06 Hours)
- Fundamentals
- Coding Redundancy, Spatial and Temporal (Interpixel) Redundancy, Irrelevant Information (Psychovisual Redundancy)
- Measuring Image Information: Entropy, Fidelity Criteria, Image Compression Model
- Some Basic Compression Methods: Lossless Compression Methods: Huffman coding, LZW coding, Run length coding, Lossy Compression Techniques: Block transform Coding
- Image File Formats: BMP, GIF, TIFF
- Image Compression Standards: Binary Image Compression Standards, Continuous Tone Still Image Compression Standards

SECTION-B

Unit 4: Image Segmentation (08 Hours)
- Fundamentals: Point, Line, Edge Detection, Detection of Isolated Points, Line Detection Edge Models, Basic Edge detection, Canny edge detector
- Thresholding: Foundation, Basic Global thresholding, Optimal global thresholding, Multiple thresholds, Multivariable Thresholding
- Region-based Segmentation Methods: Region Growing, Region Splitting and Merging,
- Segmentation using Morphological watersheds

Unit 5: Morphological Image Processing and Color Image Processing (06 Hours)
Morphological Image processing:
- Preliminaries, Erosion and dilation, opening and closing
- The Hit-or-Miss Transformation
• Some Basic Morphological Algorithms: Boundary extraction, Region filling, thinning
Color Image processing:
• Color Fundamentals and color models
• Basics of Full color image processing
• Color transformations

Unit 6: Image Representation and Description (06 Hours)
• Representation
• Boundary Descriptors
• Regional Descriptors

Object Recognition:
• Patterns and pattern Classes
• Recognition based on Decision Theoretic Methods

Text Books:

Reference Books:
2. B. Chanda, Dutta Majumdar, “Digital Image Processing and Analysis”, PHI

Pattern of Question Paper:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each
Prerequisite:
1. Knowledge of Microprocessor/Microcontroller
2. Knowledge of Computer Organization and Architecture

Objectives:
1. Understanding embedded system, processor & Embedded systems architecture.
2. Be familiar with Embedded Devices and Platforms.
3. Understanding Real Time system, Real time task scheduling & Real time operating system.
4. Understand concept of Embedded Linux and Network Configuration.

CONTENTS

SECTION-A

Unit 1: Introduction to Embedded Systems (6 Hours)

Unit 2: Embedded Processors (6 Hours)
Difference between microprocessors and microcontrollers. 8 bit and 32 bit, processors, architecture of 8-bit 8051 microcontroller and its features. ARM processor family, Difference between RISC and CISC architectures. Architecture of ARM7 and comparison of 8051 and ARM7 architecture. Introduction to ARM7 TDMI architecture, 32-bit pipelined architecture. CPSR and SPSR, VIC in ARM7, memory management and bus architecture.

Unit 3: Embedded Devices and Platforms (8 Hours)
Different IO interfaces and communication protocols used in embedded systems,

Project Case Study: Complete Temperature Controller Design, including Arduino board, 16x2 LCD, LM35 Temperature Sensor, Relay for Turning On/off a DC Fan, switches / keypad to enter the setpoint.

SECTION-B

Unit 4:: Introduction to Real Time Operating Systems (8 Hours)
RTOS services in contrast with traditional OS, Architecture of the kernel, Tasks and Task states in RTOS (idle, wait, ready), Clock Tick, Task Scheduler, Interrupt service routine, Semaphore, Mutex, mailboxes, Message Queues, Event Registers, Pipes, Signals, Timers, Socket Functions, RPC Functions, Memory Management, Priority Inversion problem.

Unit 5:: Micro-Controller Real-time Operating Systems (6 Hours)
Off-the-shelf operating system, Embedded Operating System, Introduction to uCOS-II RTOS, Salient Features of uCOSII, Study of kernel structure of uCOSII, Synchronization in uCOS-II, semaphore management, mutual exclusion semaphores, event flag management, Inter-task communication in uCOS-II, message mailbox management in uCOS-II

Unit 6: Embedded Linux (6 Hours)
Introduction to the Linux kernel, Configuring and booting the kernel, The root file system, Root file directories, /bin, /lib etc., Linux file systems, Types of file system: Disk, RAM, Flash and Network Some debug techniques- Syslog and Strace, GDB, TCP/IP Networking- Network configuration

Text Books:

Reference Books:
1. David Simon, “Embedded systems software primer”, Pearson

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Course Code: CSE321 Title: LAB – I Database Management System
Teaching Scheme Examination Scheme
Practical: 02 Hours/week Practical /Oral Examination (Marks): 50 Marks
Practical /Oral Examination (Duration): 03 Hours

Suggestive List of Practical Assignments:
Design, develop and implement any ten assignments from the following in SQL using Oracle/DB2 environment.

Assignment No.: 1
Implementation of DDL and DML Commands of SQL with suitable example

Assignment No.: 2
Implementation of different types of SQL functions with suitable example
- Number Function
- Character Function
- Aggregate Function
- Conversion Function
- Date Function

Assignment No.: 3
Implementation of different types of SQL operators with suitable example
- Arithmetic operators
- Logical operators
- Comparison Operators
- Special operators
- Set operators

Assignment No.:4
Study and Implementation of different types of Constraints

Assignment No.:5
Implementation of different types of joins
- Equijoin
- Non Equijoin
- Outer join
• Self join

Assignment No.: 6
Study and implementation of:
- Group by & Having Clause
- Order by
- Indexing

Assignment No.: 7
Study and implementation of:
- Sub queries
- Views
- Sequences

Assignment No.: 8
Study and implementation of:
- TCL commands: Rollback, Commit, Save point
- DCL commands: Grant, Revoke, Creating & Managing users

Assignment No.: 9
Study and Implementation of PL/SQL Block

Assignment No.: 10
Study and Implementation of PL/SQL Exceptions

Assignment No.: 11
Study and Implementation of Triggers

Assignment No.: 12
Study and Implementation of Cursors

Note: It is compulsory for the Students to perform one additional application based on assignment which should cover maximum possible queries.

Practical Examination:
Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.
Course Code: CSE322
Title: LAB-2 Programming in Java

Teaching Scheme
Examination Scheme
Practical: 2 Hours/Week
Practical /Oral Examination: 50 Marks

Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments.
1. Write a program to demonstrate basic syntactical constructs of java.
 a> Operators & Expressions
 b> Looping Statement
 c> Decision Making Statement
2. Write a program to define a class, described its constructor & overload its constructor.
3. Write a program to implement inheritance & demonstrate use of method overriding & various access controls.
4. Write a program to implement Multiple Inheritance with interfaces.
5. Write a program to create a package & use it in another program.
6. Write a program to implement exception handling using built-in & user defined exceptions.
7. Write a program to implement concept of multithreading.
8. Write a program for database connectivity using JDBC.
9. Write a program using Applet to demonstrate parameter passing.
10. Write a program to implement event handling
11. Write a program to implement object Serialization & deserialization.
12. Write a program to implement socket programming.

Practical Examination:
Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.
Course Code: CSE 323 Title: LAB-3: Computer Network Architecture and Protocols (Elective-I)
Teaching Scheme Examination Scheme
Practical: 02 Hours/Week Term Work: 50 Marks

Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments …….
Assignment No.: 1 :- Study of Basic Networking commands
Assignment No.: 2 :- Implementing IPV4 and IPV6 addressing.
Assignment No.: 3 :- Configure a network using RIP protocol.
Assignment No.: 4 :- Configure a network using EIGRP protocol.
Assignment No.: 5 :- Configure a network using OSPF protocol.
Assignment No.: 6 :- Configure a network using BGP protocol.
Assignment No.: 7 :- Implementing client-server model using socket programming.
Assignment No.: 8 :- Implement Wi-Fi network and study wireless protocols.
Assignment No.: 9 :- Remote login by using SSH or Telnet.
Assignment No.: 10 :- Design an enterprise network by using simulator.

TERM WORK
The term work shall consist of at least 8 experiments/ assignments based on the syllabus above.
Assessment of term work should be done as follows:

• Continuous lab assessment.
• Actual practical performance in Laboratory.
• Oral Examination conducted (internally) at the time of submission.
Suggestive List of Practical Assignments:
Implement the following Assignments using MATLAB/SCILAB/OCTAVE/JAVA

Assignment No.: 1 Image Enhancement using point processing methods

Assignment No.: 2 Image Enhancement using spatial domain methods.
- Smoothing Filters
- Sharpening Filters

Assignment No.: 3 Image Enhancement using low pass filter in frequency domain methods
- LowPass Filters
- HighPass Filters

Assignment No.: 4 Demonstration of image compression Methods
- Lossless Compression methods
- Lossy Compression methods

Assignment No.: 5 Demonstration of Image Segmentation Methods
- Threshholding methods
- Region Based Methods

Assignment No.: 6 Morphological image operations- erosion, dilation, opening and closing.

Assignment No.: 7 Programs for illustrating color image processing

Assignment No.: 8 Programs for region description and boundary representation.

Assignment No.: 9 Program for object recognition

Assignment No.: 10 Case studies

Guidelines for case studies:
• Group of 2-3 Students should select real life DIP problem Domain And implement any of its DIP module.
 ▪ Problem Domains
 • Biometric Imaging
 • Medical imaging
 • Satellite imaging etc
 ▪ DIP Modules
 • Image enhancement
 • Image Segmentation etc

OR

• Group of 2-3 Students should study any recent international journal research paper based on DIP/Computer vision

TERM WORK
The term work shall consist of at least 8 experiments/ assignments based on the syllabus above and a group of 2-3 students must prepare and present a case study. Assessment of term work should be done as follows:
 • Continuous lab assessment
 • Actual practical performance in Laboratory.
 • Oral Examination conducted (internally) at the time of submission.
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF SCIENCE AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – I

Course Code: CSE325 Title: LAB-3 Embedded Systems (Elective-I)
Teaching Scheme Examination Scheme
Practical: 2 Hours/Week Term Work: 50 Marks

Suggestive List of Practical Assignments:
1. Arduino IDE installation and testing of simple blink program
2. Write a program to interface 8 LEDs with Arduino and make them ON and OFF
3. Interface 2 switches with Arduino and write a program for blinking LEDs when switch is
 pressed
4. Interface 1 switch with Arduino and write a program to count the number of switch presses and
 print it on serial port
5. Interface LM35 Temperature Sensor with Arduino and print temperature on serial terminal
6. Interface DHT11 Sensor with Arduino and print humidity / temperature on serial terminal
7. Interface a 16x2 LCD with Arduino and print temperature on it
8. Interface a micro servo motor with Arduino and write a program to rotate it clockwise (0-180
 degree) and anticlockwise (180degree to 0)
9. Interface a moisture sensor with Arduino and write a program to turn on LEDs when the
 moisture is dry and turn it off when there is enough moisture
10. Interface a memory card and create a data logger with Arduino
11. Install Operating System (Raspbian) on a raspberry Pi 3 Board, update the OS, change time
 zone and keyboard layout
12. Install GPIO libraries and interface 4 LEDs with Raspberry pi and perform an LED blink
 program in Python
13. Interface a DHT22 Sensor with Raspberry Pi and send temperature and humidity as email using
 Python
14. Create a text to speech module using python and speech synthesis library to create a talking
 thermometer

Note: Students should perform at least 10 Assignments.

TERM WORK
The term work shall consist of at least 8 experiments/ assignments based on the syllabus above.
Assessment of term work should be done as follows:

- Continuous lab assessment.
- Actual practical performance in Laboratory.
- Oral Examination conducted (internally) at the time of submission.
Course Code: CSE326 Title: Lab IV Software Development Lab I (ASP .NET using C#)
Teaching Scheme
Practical: 02 Hours/Week
Examination Scheme
Practical / Oral Examination (Marks): 50 Marks
Practical / Oral Examination (Duration): 03 Hours

Prerequisite:
1. Programming in C / C++
2. HTML, Javascript
3. MySQL

Objectives:
1. To learn C# features
2. To Perform database operations using ADO.Net and exception handling
3. To learn different server controls of asp.net
4. To learn navigation, session, cookies, event handling
5. To learn web services

CONTENTS

SECTION-A

Unit 1: Introduction to the ASP .NET Framework and C# (03 Hours)
Introduction To Visual Studio IDE, ASP .NET & the .NET Framework , Introduction to C#, Data Types, Variables and expressions, control statements, functions, namespaces, Assembly, Components of Assembly, Private and Shared Assembly

Unit 2: Web Application with ASP.NET (04 Hours)
Introduction to Web Applications, ASP.NET page lifecycle, Server Side Controls, Client Side Controls, Basic Controls, Validation Controls, Master & Content Pages in ASP .NET

Unit 3: Web Application with ASP.NET (03 Hours)
Navigation Controls, State management techniques - Session, Query string, Cookies, View State, Event Handling, Creating and deploying web services, Deployment of Web Application
SECTION-B

Unit 4: Database Handling (03 Hours)
ADO.NET, Static and Dynamic Data Binding, ADO.NET architecture, data control, data source control, Introduction to Language Integrated Query (LINQ), Querying a Database with LINQ,

Unit 5: Introduction to SharePoint (03 Hours)
Deployment Scenarios - On-Premise Deployment, Office 365 Deployment, Hosted Deployment, Hybrid Deployment.

Unit 6: Introduction to SharePoint Content Management (04 Hours)
Enterprise Content Management - Site Policies, Managed Meta Data.

Text/Reference Books:
2. ASP.NET Unleashed 4, Stephen Walther,Nate Dudek, Kevin Hoffman, Pearson
4. PROFESSIONAL SHAREPOINT 2013 DEVELOPMENT, Reza Alirezaei Brendon Schwartz Matt Ranlett Scot Hillier Brian Wilson Jeff Fried Paul Swider

Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments …...
1. Design & develop ASP.net Web Application using validation controls.
2. Design & develop ASP.net Web Application use master & content page.
3. Design a web form to insert, update, delete & show student information through database connectivity with (SQL/Oracle).
4. Create a web service and use it in web site.
5. Design & develop ASP.net Web Application using session.
6. Call an external web service through SharePoint workflow.
7. Create custom action using SharePoint workflow.
8. Create a simple Calculator using SharePoint workflow.
9. Create a Web forms application that integrated with Office 365.
10. Create a web form application for building Resume.
11. Mini Project.

Practical Examination:
Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF SCIENCE AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – I

Course Code: BSH305 Title: Communication Skill-II
Teaching Scheme Examination Scheme
Theory: 02Hours/Week Term Work: 50 Marks

Prerequisite:
1. Basic Knowledge of Soft Skills
2. Good understanding of English

Objectives:
1. To imbibe leadership skills
2. To develop interpersonal Skills
3. To introduce corporate etiquettes
4. To imbibe team skills

CONTENTS

Unit 1: Understanding self and Goal Setting (5 Hours)
- Self-Assessment: Understanding Self Core Competency (SWOT/SWOC)
- Long term and short-term Goal Setting
- Execution Skills

Unit 2: Interpersonal Skills (6 Hours)
- Interpersonal Communication
- Conflict Management
- Problem Solving
- Decision Making
- Persuasion and Influence

Unit 3: Group Dynamics and Team Building (4 Hours)
- Group Vs Team
- Team Building
- Team Work
- Developing Leadership Skills

Unit 4: Corporate Etiquette (5 Hours)
- Clothing Etiquette, Personal hygiene and grooming
- Time Management
- Influencing Skills (Impression)
- Balancing personal and professional Life
- Ethics, Values and Laws

Text Book:
1. The Ace of Soft Skills (Gopalaswamy Ramesh) Pearson Publication

Reference Books:
1. Execution; :Ram Charan
(Publisher: Crown Business; 1 edition (June 15, 2002)

2. Laws of Teamwork : John C Maxwell

3. Master of Business Etiquette: Cyrus Gonda
(Author: Cyrus Gonda, Publisher EMBASSY BOOKS, 2017, ISBN 9385492721, 9789385492723)

4. Goals
(Author: Brain Tracy ISBN: 1-57675-235-6Published by Berrett-Koehler Publishers, Inc)

5. Interpersonal Skills at work
(Author: John Hayes Second Edition: Routledge)

6. People Smart
(Author: Freda Hansburgby Berrett-Koehler Publishers, Inc)

Term Work Assessment (50 marks):
The term work shall consist of internal online examination of 50 Marks, conducted at institute level.
The marks of the examination shall be forwarded to the University.
Course Code: CSE351 Title: Advanced Java
Teaching Scheme Examination Scheme
Theory: 04 Hours/Week Class Test: 20 Marks
Prerequisite:
1. Data Structure Theory Examination (Marks): 80 Marks
2. Core Java Theory Examination (Duration): 03 Hours
3. Basic Programming skills in C/C++

Objectives:
1. Develop skills in Enterprise Java
2. Understanding advanced concepts in Java Programming
3. Understanding importance of Service oriented Architecture of today's web application

CONTENTS

SECTION-A

Unit 1: Java Enterprise Edition (04 Hours)
Introduction, Overview of J2EE, J2EE Architecture 1 tire, 2 tire, and N tire, Standard Java EE Services, Java EE 8 features, Introduction to AJAX, Ajax using JSON, XML, Introduction to Java RMI

Unit 2: Servlet (08 Hours)
Servlet Overview and Architecture, Servlet API, Servlet Life Cycle, Working with ServletConfig and ServletContext, Handling HTTP, get Requests, Handling HTTP post Requests, Redirecting Requests to Other Resources, Session Tracking, Cookies, Session Tracking with HttpSession, Deployment descriptor, Building Java Projects with Maven

Unit 3: Java Server Pages (08 Hours)
JSP: Overview, Lifecycle, Architecture, JSP Elements: Directives, Scripting, Action tags, Implicit Objects, Comments, Custom Tags, Scope: page, request, session, JSP Exception handling

SECTION-B

Unit 4: Enterprise JavaBeans (06 Hours)
Understanding Enterprise JavaBeans, Types of beans, Creating a JavaBean, JavaBean Properties,
Stateful Session bean, Stateless Session bean, Entity bean.
Introduction to Java mail service, Component of JMS

Unit 5: Web Services (08 Hours)
SOAP Web Services: SOAP, WSDL, UDDI, ebXML, transport protocol, Writing SOAP web
services, Invoking SOAP web services, JEE 7 for web service
RESTful Web Services: Resources and URIs, RESTful Web Services Specifications Overview, Java
API for RESTful Web Services, JAX-RS 2.0, Writing RESTful Web Services, Invoking RESTful
Web Services

Unit 6: Hibernate & Spring (06 Hours)
Hibernate: Architecture, component of Hibernate, Hibernate query language, Hibernate O/R mapping,
Spring :Overview of Spring, Spring Architecture and Container, dependancy injection, Spring Web
MVC Framework.

Text Books:
1. Antonio Goncalves, Beginning Java EE 6 Platform with GlassFish 3, Apress
2. Java Server Programming(Java EE 5) Black Book by Willey Publication
3. Subrahmanyam Allamaraju, Samir Tyagi, Karl Avedal, John Griffin, “Professional
Java Server Programming”, Wrox Publication.

Reference Books:
1. Java Platform, Enterprise Edition The Java EE Tutorial, Release 7, Eric Jendrock, Ricardo Cervera-
Navarro, Ian Evans, Kim Haase, William Markito, 2014, Oracle

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper
shall be set having two sections A and B. Section A questions shall be set on first part and Section B
questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be
compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions,
15 marks each.
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF SCIENCE AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – II

Course Code: CSE352
Title: Software Engineering

Teaching Scheme
Examination Scheme
Theory: 4 Hours/Week
Class Test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite:
1. Students should have prior basic knowledge on Software attributes, Process models.
2. Students should have some basic knowledge on Testing, Maintenance.

Objectives:
1. This course is intended to provide the students with an overall view over Software Engineering discipline and with insight into the processes of software development.
2. To learn about generic models of software development process.
3. To understand the different design techniques and their implementation.
4. To learn various testing and maintenance measures.

CONTENTS

SECTION -A

Unit 1: Software Engineering – Overview (4 Hours)

Unit 2: Software Process Models (8 Hours)

Unit 3: Requirement Engineering (8 Hours)
– Developing Use cases – Building the Analysis Models – Elements of the Analysis Model – Analysis pattern – Negotiating Requirements – Validating Requirements.

SECTION -B

Unit4: Analysis Modeling (5 Hours)

Unit5: Design & Testing (8 Hours)

Unit 6: Quality Assurance (7 Hours)

Text Books:

Reference Books:

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY AURANGABAD
FACULTY OF ENGINEERING AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – II

Course code: CSE353
Title: Design and Analysis of Algorithms
Teaching Scheme
Lectures: 4 Hrs/Week
Examination Scheme
Class test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Course objectives:
1. To build a solid foundation of the most important fundamental subject.
2. To study paradigms and approaches used to analyze and design algorithms and to appreciate the impact of algorithm design in practice.
3. To understand how to measure performance of any algorithm.

Prerequisite
1. Programming in C Language (Covered at FE level).
2. Discrete Mathematical Structure (Covered at SE level).
3. Data Structures (Covered at SE level).

CONTENTS

SECTION-A

Unit 1-: Fundamental concept of algorithm design & analysis (8 hrs)
• Algorithm: characteristics, specifications
• Writing Pseudo-Code
• Frequency count and its importance in analysis of an algorithm,
• Analysis of searching algorithms: sequential, binary search,
• Analysis of sorting methods: bubble, insertion, selection, heap sort. Analysis of each sorting technique for best, worst and average case, Concept of Internal & External sorting.

Unit 2-: Divide and conquer algorithmic design method (6 hrs)
• Divide and conquer: basic algorithm and characteristics.
• Binary Search: method and analysis of binary search for best, worst and average case for searches.
• Quick Sort, Merge Sort : method and analysis of algorithms
• Finding the largest and smallest number in a list using DnC.

Unit 3-: Greedy Method (6 hrs)
• The Greedy Method: basic algorithm and characteristics.
• Fractional Knapsack Problem solving using greedy method.
• Optimal merge patterns and optimal storage on tapes.
• Job sequencing with deadlines.
• Huffman Coding: greedy method
• Minimum cost spanning trees: Prim’s and Kruskal’s Algorithm
• Single source shortest path

SECTION-B

Unit 4.1:- Dynamic Programming Method (6 hrs)
• Dynamic Programming Method: basic algorithm and characteristics.
• 0/1 Knapsack Problem solving using DP method.
• Multistage graphs
• All pair shortest Path
• Optimal binary search trees
• Travelling salesperson problem

Unit 4.2:- Tree traversal and graph traversal techniques (4 hrs)
• Tree traversal techniques
• Graph traversal techniques: DFS, BFS
• Connected components
• Bi-connected components & spanning trees

Unit 5:- Backtracking Method (4 hrs)
• Backtracking Method: basic algorithm and characteristics.
• Solving n-queens problem
• Sum of subsets problem
• Graph colouring
• Hamiltonian cycle (TSP)

Unit 6:- Branch and Bound technique (6 hrs)
• Branch and bound: basic algorithm and characteristics.
• Solving n-queens using branch & bound
• FIFO Branch and Bound & Least Cost Branch & Bound
• Least Cost Search
• 15-puzzle
• Solving Travelling salesperson problem using branch & bound

Text Books:

Reference books:

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Course code: ITD354
Teaching Scheme
Lectures: 4 Hrs/Week

Title: E-Business System
Examination Scheme
Class test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite:
1. Concepts of Website Development.
2. Concepts of Online Shopping.

Objectives:
1. To explain Basics of e-Business and e-Business Strategies
2. To classify the e-Business models
3. To describe the Architecture of basic e-Business model
4. To explain the CRM and SCM Process
5. To analyse the e-procurement models and security techniques

CONTENTS

SECTION A

Unit 1: Overview of e-Business and its Strategy: (06 Hrs)
e-Business Strategy: Definition, Types of Strategies like Supply Chain Management, Marketing and IS, Strategic positioning, Levels of e-Business Strategy like Supply Chain, Line of Business and Corporate Level, Strategic Planning Process.

Unit 2: e-Business Models and Architecture: (06 Hrs)

Unit 3: CRM and Selling Chain Management: (08 Hrs)
Customer Relationship Management: Basics, Definitions, Phases of CRM, CRM Process Competencies, Building a CRM Infrastruct
Selling Chain Management: Basics, Definitions and goals of Selling Chain Management, Order Acquisition Process, Elements of Selling Chain Infrastructure.

SECTION B

Unit 4: SCM and ERP: (06Hrs)

Unit 5: e-Procurement and KM (06Hrs)
Knowledge Management: Elements of Knowledge Management Applications - Data Organization and Collection, Analysis and Segmentation, Real-Time Personalization, Infrastructure for Broadcast, Retrieval and Interaction, Performance Monitoring and Measurement.

Unit 6: E-Commerce Security System (08 Hrs)

Text Books:
3. en.wikipedia.org/wiki/Business_process

Reference Books:
Note: Case Studies from the books, e-Office, amazon.com, flipkart.com, etc

Pattern of Question Paper:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section
For 80 marks Paper:

- Minimum ten questions
- Five questions in each section
- Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
- From the remaining questions in section A and B students are supposed to solve any two questions from each section, 15 marks each.
Course code: CSE354
Teaching Scheme
Lectures: 4 Hrs/Week

Title: Systems Programming
Examination Scheme
Class test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite
Data structures and Operating System

Objectives
Students will be able to
1. Understand concepts of system programming, machine language and assembly language
2. Understand concepts of lexical, syntax and semantic analysis
3. Understand assemblers, macros and macro call
4. Understand compilers, loaders, linkers, interpreters and debuggers

CONTENTS

SECTION –A

Unit-1. Introduction to System Programming (06 hrs)
Concept, historical development, components of system software, life cycle of source program, programming languages and language processors, fundamentals of language processing, symbol table, foundation of system software.

Unit-2. Assembler (06 hrs)
General design procedure, design the assembler, types of assemblers, one pass assembler, advanced assembly process, design of two pass assembler

Unit-3. Macro language and Macro processors (08)
Macro instructions, features of macro facility, macro instruction arguments, conditional macro expansion, macro call within macros, macro instruction defining macros
Implementation- Implementation of restricted faculty: two pass algorithm, single pass algorithm, implementation of macro calls within macros, implementation within assembler.
SECTION – B

Unit-4. Loaders and Linkers (06)
Loaders scheme: “compile and go loaders”, general loader schemes, absolute loaders, subroutine linkages, relocating loaders, direct linking loaders, other loader schemes, binders, linking loaders overlays, dynamic binders. Design of absolute loaders, design of direct linking loaders, linkers vs loaders.

Unit-5. Scanning and Parsing (06)
Programming language grammar, classification of grammar, ambiguity in grammatical specification, scanning, parsing, top down and bottom up parsing, language processor development tools

Unit- 6. Compilers, Interpreters and Debuggers (08)
Causes of large semantic gap, binding and binding times, data structure used in compiling scope rules, memory allocation, compilation of expression, compilation of control structure, code optimization.
Benefits of interpretation, overview of interpretation, classification of debuggers, dynamic/interactive debugger

Text Books
2. D. M. Dhamdhere, 'System Programming and operating system', Tata Mc- Graw Hill.

Pattern of Question Paper:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section
For 80 marks Paper:
• Minimum ten questions
• Five questions in each section
• Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
• From the remaining questions in section A and B students are supposed to solve any two questions from each section, 15 marks each.
Course Code: CSE391
Title: Distributed Operating System (Elective –II)
Teaching Scheme:
Theory: 04 Hours/Week
Examination Scheme:
Class Test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite:
1. Operating System
2. Computer Network
3. Java Programming

Objectives:
1. To understand basic concepts and need of Distributed systems.
2. To provide students with contemporary knowledge in distributed systems.
3. To provide master skills to measure the performance of distributed algorithms.
4. To build up distributed system using distributed algorithms.
5. To equip students with skills to analyze and design distributed applications.

CONTENTS
SECTION-A

Unit 1: Introduction to Distributed Systems (06 Hours)
Definition, Issues, Goals, and Types of distributed systems, Distributed System Models. Case study of World Wide Web

Unit 2: Communication (06 Hours)
Inter-process communication (IPC): MPI, Remote Procedure Call (RPC): Design Issues of RPC, Object Oriented Communication, Message Oriented Communication, Case study of Java RMI and CORBA

Unit 3: Synchronization (08 Hours)
Need of clock synchronization in Distributed system, Physical Clock Synchronization: Server-initiated, Client-initiated and Averaging Algorithms, Logical Clock Synchronization: Lamports and Vector Clock Algorithms, Comparative Performance Analysis of Physical Clock synchronization algorithms and logical Clock synchronization algorithms. Classification of Mutual Exclusion Algorithm: Centralized Mutual Exclusion: Election

SECTION-B

Unit 4: Resource and Process Management (06 Hours)
Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach. Introduction to process management, process migration, Threads: Worker-Dispatcher Model, Virtualization, Clients, Servers, Code Migration. Case study of Java Applets

Unit 5: Consistency and Replication (06 Hours)
Introduction, Data-Centric and Client-Centric Consistency Models, Replica Management.

Unit 6: Distributed File System (08 Hours)

Text Books:

Reference Books:
3. Advanced concepts in Operating Systems, Mukesh Singhal & N.G.Shivaratri, TMH.

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Course Code: CSE392
Teaching Scheme
Theory: 4 Hours/Week

Title: Artificial Intelligence (Elective-II)
Examination Scheme
Class Test: 20 Marks
Theory Examination (Marks): 80 Marks
Theory Examination (Duration): 03 Hours

Prerequisite:
1. Discrete Mathematics
2. Knowledge of any programming language
3. Data structures

Objectives:
The student should be made to
1. Study the concepts of Artificial Intelligence.
2. Learn the methods of solving problems using Artificial Intelligence.
4. To be familiar with the applicability, strengths, and weaknesses of the basic knowledge representation, problem solving, machine learning, knowledge acquisition and learning methods in solving particular engineering problems.

CONTENTS

SECTION-A

Unit 1: Introduction (6 Hrs)
Introduction to AI, Foundation of AI, History, AI Techniques, AI Problems, Production systems, Problem characteristics, Production System Characteristics, Issues in the Design of Search Problems

Unit 2: Heuristic Search and Knowledge Representation (6 Hrs)
Heuristic search, Hill Climbing, Best first search, Problem Reduction, Means-Ends Analysis, Representations and Mapping, Knowledge Representation, issues in Knowledge Representation, Representing simple facts in logic, representing instance and ISA relationships, Computable functions and predicates.

Unit 3: Logic Programming (8 Hrs)
Procedural Versus Declarative Knowledge, Logic Programming, Forward and backward reasoning, Forward and backward, Matching, Control Knowledge, Nonmonotonic reasoning,

SECTION-B

Unit 4: Planning (6 Hrs)
Planning: Introduction, An example domain: The blocks world, component of planning system, goal stack planning, non linear planning using constraint pasting, hierarchical planning, Reactive system.

Unit 5: Advanced AI (6 Hrs)
Game playing: Min max search procedure, Alpha-Beta cutoffs, Natural Language Processing: introduction, Syntactic Processing, Semantic Analysis, Discourse and Pragmatic Processing.

Unit 6: Learning & Expert systems (8 Hrs)
Introduction to learning, Rote learning, learning by taking advice, learning in problem solving, learning from examples: Induction, explanation based learning , Representing and using Domain knowledge, Architecture of expert systems, knowledge acquisition.

Text Books:

Reference Books:

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Prerequisite:
1. Introductory course on computer Networks

Objectives:
To study principal and latest practices for building reliable and secure code to defend against various attack techniques, harmful viruses and threats.

CONTENTS

SECTION-A

Unit 1: Introduction (06 Hours)

Unit 2: Symmetric ciphers (06 Hours)
Multiple encryption and triple DES, Block cipher modes of operation, Stream ciphers and RC4, Stream ciphers – Blowfish, Modern Symmetric encryption - IDEA, Confidentiality using Symmetric Encryption, Placement of encryption function, traffic confidentiality, Random number generation.

Unit 3: Introduction to number theory (08 Hours)
Prime numbers, Fermat’s and Euler’s theorems, Chinese Remainder Theorem, Discrete logarithms. Public key cryptography - Principles of public keycrypto systems and RSA, Key management, Diffie-Hellman key exchange, Elliptic curve arithmetic, Elliptic curve cryptography, Key
Distribution, Message authentication and Hash functions, Security and Hash functions and MACs, HMAC, CMAC, Digital signatures and authentication protocols.

SECTION-B

Unit 4: Attacks (06 Hours)

Unit 5: Other public Key Cryptosystems (06 Hours)

Unit 6: Wireless and IP Security (08 Hours)

Text Books:

Reference Books:
1. Bruce Schneier, "Applied Cryptography", John Wiley & Sons

PATTERN OF QUESTION PAPER:
Six units in the syllabus shall be divided in two equal parts i.e. 3 units in each part. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

For 80 marks Paper:
1. Minimum ten questions
2. Five questions in each section
3. Question no. 1 from section A and Question no. 6 from section B, 10 marks each, will be compulsory.
4. From the remaining questions in section A and B students are supposed to solve any two questions, 15 marks each.
Course Code: CSE371 Title: LAB-I Advanced Java
Teaching Scheme Examination Scheme
Practical: 02 Hours/Week Practical /Oral Examination: 50 Marks
 Practical /Oral Examination (Duration): 03 Hours

Suggestive List of Practical Assignments:
Assignment No.: 1 Develop simple application using AJAX and JSON.
Assignment No.: 2 Develop application using for Servlet life cycle
Assignment No.: 3 Develop a Servlet program to print HTTP header information.
Assignment No.: 4 Develop application using JSP
Assignment No.: 5 Develop application using JSP Elements: Directives, Scripting, Action tags
Assignment No.: 6 Develop application using JSP Directives, Scripting, Action tags,
Assignment No.: 7 Develop application using JSP object scope page, request, session
Assignment No.: 8 Develop application program using custom tags
Assignment No.: 9 Develop application stateless JavaBeans
Assignment No.: 10 Develop application stateful JavaBeans
Assignment No.: 11 Develop application entity JavaBeans
Assignment No.: 12 Develop a hibernate application to store the feedback of website visitors in database
Assignment No.: 13 Develop Simple MVC Spring application.
Assignment No.: 14 Develop simple Hibernate application using any Database.
Assignment No.: 15 Develop SOAP web service based application.
Assignment No.: 16 Develop RESTful web service for based application.

Practical Examination:

Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.
Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments.

1. Write a program in C for Matrix multiplication and check its failure also introspect the causes for its failure and write down the possible reasons for its failure.
2. Take any system (e.g. ATM system) and study its system specifications and report the various bugs.
3. Write the test cases for any known application (e.g. Banking application)
4. Create a test plan document for any application (e.g. Library Management system)
5. Test any one web application using Selenium testing tool.
6. Study of any bug tracking tool (e.g. Bugbit)
7. Test any Java application using JMeter.
9. Design and Develop test cases for Mobile application.

Term Work:
The Term Work shall consist of at least 8 experiments / assignments based on the suggestive list of practical assignments. Assessment of term work should be done as follows:
- Continuous lab assessment
- Actual practical performance in laboratory
- Oral examination conducted (internally) at the time of submission
Course Code: CSE373 Title: LAB 7: Design and Analysis of Algorithms
Teaching Scheme Examination Scheme
Practical: 2Hrs/week Practical & Oral: 50 Marks
 Practical Exam Duration: 3 Hours

Suggestive List of Practical Assignments:
Design, develop and implement the following programs using C or C++ language in LINUX/Windows environment.

1. Program to implement Heapsort.
2. Program to implement Insertion sort, Bubble sort and Selection sort
3. Program to implement Binary search using Divide and Conquer.
4. Program for finding the minimum and maximum using Divide and Conquer.
5. Program to implement merge sort using Divide and Conquer.
7. Program to implement Prims Algorithm using greedy method.
8. Program to implement Kruskal’s Algorithm using Greedy method.
10. Program to implement All pairs Shortest Path using Dynamic Programming.
11. Program to implement Graph traversal: - Breadth First Traversal.
12. Program to implement Graph traversal: - Depth First Traversal.
13. Program to implement 8- Queens’ problem using Backtracking.

Practical Examination:
Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.
Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments (Minimum 8).
Assignment No.:1 Client/server using RPC/RMI.
Assignment No.:2 Implementation of multi thread application
Assignment No.:3 Inter-process communications
Assignment No.:4 Group Communications
Assignment No.:5 Load Balancing Algorithms
Assignment No.:6 Name Resolution protocol
Assignment No.:7 Election Algorithms
Assignment No.:8 Clock Synchronization algorithms
Assignment No.:9 Mutual Exclusion Algorithms
Assignment No.:10 Deadlock management in Distributed system
Assignment No.:11 Distributed File Systems
Assignment No.:12 CORBA File

Term Work:
The Term Work shall consist of at least 8 experiments / assignments based on the suggestive list of practical assignments. Assessment of term work should be done as follows:
- Continuous lab assessment
- Actual practical performance in laboratory
- Oral examination conducted (internally) at the time of submission
Dr. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD
FACULTY OF SCIENCE AND TECHNOLOGY
Third Year Engineering (CSE/IT)
Semester – II

Course Code: CSE375 Title: LAB-8 Artificial Intelligence (ELECTIVE-II)
Teaching Scheme Examination Scheme
Practical: 02 Hours/Week Term Work: 50 Marks

Suggestive List of Practical Assignments:
Design, develop and implement the following Assignments …….
1. Study of Prolog
2. Program to generate family tree
4. Program checking a person eligible for voting.
5. Write a program to implement Single Player Game (Using Heuristic Function)
6. Write a program to Implement A* Algorithm.
7. Program to calculate factorial of a number
8. Program for generating Fibonacci series
9. Program for generating pyramid
10. Program for Towers of Hanoi puzzle
11. Design an expert system (Ex. Medical Diagnosis System)

Term Work:
The term work shall consist of at least 8 experiments/ assignments based on the syllabus above.
Assessment of term work should be done as follows
 Continuous lab assessment
 Actual practical performance in Laboratory.
Suggestive List of Practical Assignments:

1. Write a socket program to implement TCP quiz
2. Write a program for a tic-tac-toe game with any attack model
3. Write socket programs for authentication problems
4. Implement a File Transfer Protocol and analyze attack pattern.
5. Write a problem of secure communication between two groups
6. Design a communication protocol to anonymous routing.
7. Design and code security association between computers in a network through shared access
8. Exercises on Snort, Wireshark, network simulator tools.

NOTE: At least 08 Experiments along with a mini application must be done in the semester.

Term Work:
The Term Work shall consist of at least 8 experiments / assignments based on the suggestive list of practical assignments. Assessment of term work should be done as follows:

- Continuous lab assessment
- Actual practical performance in laboratory
- Oral examination conducted (internally) at the time of submission
Prerequisite
1. Concepts in Object Oriented Programming Language
2. Knowledge of XML

Objectives:
1. To know the difference between android and other mobile development platform.
2. To understand how android app work through life cycle, intents, manifests etc.
3. To develop different android app with compelling user interfaces using menus, layouts and Views.
4. To use android API for data storage, retrieval, content providers, SMS and Telephony.
5. Tap into location based services and different sensors.

CONTENTS

SECTION-A

Unit 1: Introduction to Android

Unit 2: User Interface
Design, Study of different layouts (Linear, relative, table, absolute, frame, Constraint), Introducing Views, Creating new Views, Drawable Resources, Creating and Using menus

Unit 3: Intents, Broadcast Receivers and Files
Introducing Intents, Intents and Intent filters, What are Pending Intents, Adapters, Internet Resources, Notifications, Introducing Dialogs, Saving Application Data in external and internal memory, Creating and saving preferences, Retrieving shared preferences, Creating a standard preference activity, Saving Activity State, Saving and Loading Files, Including static files as Resources, File management tools

Unit 4: Database and Content Providers
Introducing Android Databases, Introducing SQLite, Cursors and content values, Working with SQLite Database, Creating new content Provider, Introduction to Firebase, Real time/Cloud, Authentication in firebase, Introduction to MySQL database, Connecting to MySQL by JSON, PHP scripts.

Unit 5: Telephony, Hardware and Network Services
Telephony, Reading Phone device details, Reading Sims Details, Incoming and outgoing call monitoring, Tracking Service Change, Introducing SMS and MMS, Sending SMS and MMS, Sending SMS messages manually, Use of Bluetooth, Managing Network Connectivity, Managing Wi-Fi

Unit 6: Google Services/Maps, Sensors and Multimedia
Google Map - Layout file, Google Map – Android Manifest file, Customizing Google Map, Adding Marker, Changing Map Type, Enable/Disable zoom, Using Sensors and Sensor Manager Interpreting sensor values, Using Compass, Accelerometer and orientation services, Controlling Device Vibration, Working with multimedia players (Audio/Video)

Text Books/ Reference Books/ Internet Resource:
5. Hello Android: Pragmatic Book Shelf 2009
6. Professional Android Development, Wrox
7. Mobile App Development
8. https://www.tutorialspoint.com,

List of Suggestive Experiments
Design, develop and implement following assignments using Android Studio/ Visual studio xamarin.
1. Design and develop Android Application to display “Hello World” using basic Widgets
2. Design and develop Android Application to demonstrate Activity Life Cycle
3. Design and develop Android Application to demonstrate GUI by using different Layouts/widgets
4. Design and develop Android Application to demonstrate views in Android
5. Design and develop Android Application to demonstrate Intents (Implicit/Explicit)
6. Design and develop Android Application to demonstrate Broadcast Receivers/Services
7. Design and develop Android Application to demonstrate Saving Files in External/Internal Storage
8. Design and develop Android Application to demonstrate Content Providers
9. Design and develop Android Application to demonstrate SQLite database (Dictionary, Quiz, etc.)
10. Design and develop Android Application to demonstrate firebase operations (data push, retrieval, delete, update etc.)
11. Design and develop Android Application to demonstrate MySQL database
12. Design and develop Android Application to demonstrate use of Telephony (Call/SMS)
13. Design and develop Android Application to demonstrate use of Bluetooth/wi-fi
14. Design and develop Android Application to demonstrate use of google map API
15. Design and develop Android Application to play audio/video files
16. Design and develop Android Application to demonstrate sensors (Accelerometer/Campass)

List of Suggestive Assignments
1. Develop an application for Hospital (Patient/Doctor portal)
2. Develop an application for online Quiz
3. Develop chat application

MINI PROJECT (Compulsory): Students has to submit a mini project at end of semester with report in a group of maximum 3 students

Practical Examination:
Practical Examination should be conducted by internal examiner for three hours under the supervision of external examiner. External examiner should evaluate student by checking practical performance and conducting viva.