Syllabus of Design of RC Structures (DRCS)

BTCVC 601 Design of RC Structures

Teaching Scheme: (3 Lectures + 1 Tutorial) hours/week

Course Contents

Module 1: Introduction (4 Lectures)

Basic Aspects of Structural Design, Introduction to Design Philosophies, Stress Strain behavior of Materials Working stress method, Ultimate load method and Limit state method, Comparison of Different Philosophies, Factor of Safety, Estimation of Loads.

Working Stress Method
Module 2: (8 Lectures)
Stress block parameters, permissible stresses, balanced, under reinforced and over reinforced section, analysis and design for flexure, shear, analysis and design of singly and doubly reinforced beams. Design of axial and uniaxial eccentric loaded columns, Isolated Column Footings, WSM design requirements as per Annexure B of IS 456:2000

Limit State Method

Module 3: Introduction to LSM (10 Lectures)

Introduction to limit state approach, types and classification of limit states, characteristics strength and characteristics load, load factor, partial safety factors, strain variation diagram, stress variation diagram, serviceability criteria

Limit State of Collapse in Shear and Bond
Design for shear: shear failure, types of shear reinforcement, minimum shear reinforcement, design of shear reinforcement

Design for bond: types, factors affecting, resistance, check for development length, detailing of reinforcement

Module 4: Limit State of Collapse in Flexure (16 Lectures)
Design of beams: Analysis and Design: Singly and Doubly Reinforced Beams, Flanged (L and T) sections.

Design of Slabs: One-Way and Two-Way Slab: Behavior of slabs, types, support conditions, analysis and design with various conditions Staircases, effective span and load distribution, design of dog- legged and open well stair case.

Module 5: Limit State of Collapse in Compression (10 Lectures)
Design of columns, and footings
Analysis and design of axially and eccentrically loaded short columns (Circular and Rectangular), construction of Interaction diagrams for uni-axial bending and its application in design, concept of design charts, concept of bi-axial bending, concept of interaction surface, Design of isolated column footing for axial load, and uni-axial bending.

Text Books

- IS: 456-2000, IS: 456-1978, Bureau of Indian Standards, New Delhi
- Karve and Shah, "Limit State Theory \& Design", Structures Publications, Pune
- Jain A.K., "Reinforced Concrete Design (Limit State)", Nemchand Brothers, Roorkee
- Sinha and Roy, "Fundamentals of Reinforced Concrete"
- Sinha S.N., "Reinforced Concrete Design, Vol. I, II", Tata Mc-Graw Hill
- Varghese P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, New Delhi
- Mehra H. and V.N. Vazirani, "Limit State Design of Reinforced Concrete Structures", Khanna Publishers, N. Delhi, ISBN No: 978-81-7409-162-9
- Vazirani V.N. and Ratwani M.M., "Design of Reinforced Concrete Structures", Khanna Publishers, N. Delhi, ISBN No: 978-81-7409-232-8
- Pillai S Unnikrishna, and Menon Devdas., "Reinforced Concrete Design" Tata Mc-Graw Hill

Reference Books

- Punmia B.C., "Reinforced Concrete Design, Vol. I, II", Laxmi Publications
- Relevant Publications by Bureau of Indian Standards, New Delhi

Course Outcomes: On completion of the course, the students will be able to comprehend the various design philosophies used in design of reinforced concrete. Analyze and design the reinforced concrete sections using working stress and limit state method.

Introduction

_R.C.C. Structure design : a combination of concrete and steel reinforcement that are joined into one piece and work together in a structure. The term "reinforced concrete" is frequently used as a collective name for reinforced-concrete structural members and products. For a strong, ductile and durable construction the reinforcement needs to have the following properties at least:-

1.High relative strength

2. High toleration of tensile strain
3. Good bond to the concrete, irrespective of pH , moisture, and similar factors
4. Thermal compatibility, not causing unacceptable stresses (such as expansion or contraction) in response to changing temperatures.
5. Durability in the concrete environment, irrespective of corrosion or sustained stress for example

History

François Coignet was the first to use iron-reinforced concrete as a technique for constructing building structures. In 1853, Coignet built the first iron reinforced concrete structure, a four-story house at 72 rue Charles Michels in the suburbs of Paris. Coignet's descriptions of reinforcing concrete suggests that he did not do it for means of adding strength to the concrete but for keeping walls in monolithic construction from overturning. In 1854, English builder William B. Wilkinson reinforced the concrete roof and floors in the two-story house he was constructing. His positioning of the reinforcement demonstrated that, unlike his predecessors, he had knowledge of tensile stresses. Joseph Monier was a French gardener of the nineteenth century, a pioneer in the development of structural, prefabricated and reinforced concrete when dissatisfied with existing materials available for making durable flowerpots. He was granted a patent for reinforced flowerpots by means of mixing a wire mesh to a mortar shell In 1877. Before 1877 the use of concrete construction, though dating back to the Roman Empire, and having been reintroduced in the early 1800s, was not yet a proven scientific technology. Ernest L. Ransome was an English-born engineer and early innovator of the reinforced concrete techniques in the end of the 19th century. G. A. Wayss was a German civil engineer and a pioneer of the iron and steel concrete construction. In 1879. Wayss bought the German rights to Monier's patents and in 1884 One of the first skyscrapers made with reinforced concrete was the 16 -story Ingalls Building in Cincinnati, constructed in 1904 The first reinforced concrete building in Southern California was the Laughlin Annex in Downtown Los Angeles, constructed in 1905 The National

Association of Cement Users (NACU) published in 1906 "Standard No. 1" in 1910 the "Standard Building Regulations for the Use of Reinforced Concrete".

Fig. 1. R.C.C Building

Necessity of Steel bar in concrete

1.R.C.C. having high strength in compression but very weak in tension and for reinforcementvice-versa
2. The tensile strength of concrete is about $10-15 \%$ of its compressive strength, to overcome this difficulty it becomes necessary to reinforce the plain. cement concrete by placing steel bars in tensile zone of the concrete. (i.e. to increase tensile strength of tensile zone of the concrete section, concrete is to be reinforced).

(a) Simply supported beam

(b) Cantilever beam

In both the cases steel reinforcement is provided in tensile zone. only, such beam is known as singly reinforced beams. However, steel bars are also provided in compression zone is termed as
anchor bars, to hold the stirrups in position. If the steel bars are provided on compression side which will assist the concrete in taking compression is known as doubly reinforced section.

Grade of Concrete According to IS. 456 : 2000,
The concrete mixes are designated as M10, M15, M20 -Ordinary concrete.
M25, M30, M35, M40, M45, M50, M55 - standard concrete.
M60, M65, M70, M75, M80-High strength concrete.
where, M - Concrete mix. Number - Ultimate compressive strength of 15 cm cube at 28 days expressed in $\mathrm{N} / \mathrm{mm}^{2}$.

Function Of Reinforced Concrete

1. To resist direct or bending tension and compression.
2. To strengthen the concrete in compression also.
3. To resist diagonal tension due to shear.
4.To prevent buckling of main bars in column
5.To resist spiral cracking due to torsion

Advantages and Disadvantages of RCC

Strength : R.C.C. has very good strength in tension as well as compression.
Durability : .R.C.C. structures are durable if designed and laid properly. They can last up to 100 years. Mouldability : R.C.C. sections can be given any shape easily by properly designing the formwork. Thus, it is more suitable for architectural requirements.

Ductility : The steel reinforcement imparts ductility to the R.C.C. structures
Economy : R.C.C. is cheaper as compared to steel and prestressed concrete. There is an overall economy by using R.C.C. because its maintenance cost is low

Transportation: The raw material which are required for R.C.C. i.e. cement, sand aggregate, water and steel are easily available and can be a sported easily. Nowadays Ready Mix Concrete, is used for faster and better construction. (RMC is the concrete which is manufactured in the factory and transported to the site in green or plastic state).

Fire Resistance : R.C.C. structures are more fire resistant than other commonly used construction materials like steel and wood.

Permeability : R.C.C. is almost impermeable to moisture
Seismic Resistance : Properly designed R.C.C. structures are extremely resistant to earthquake

Disadvantages of RCC

1. R.C.C. structures are heavier than structures of other materials like steel, wood and glass etc.
2. R.C.C. needs lot of formwork, centering and shuttering to be fixed, thus require lot of space and skilled labour
3.Concrete takes time to attain its full strength. Thus, R.C.C structures can be used immediately after construction unlike steel structures

Assumption for design of member (WSM): (IS 456:2000, Page No. 80, Cl. No. B-1.3)

1. At any cross section, plane sections before bending remain plain after bending.
2. All tensile stresses are taken by reinforcement and none by concrete
3.The stress-strain relationship of steel and concrete under working loads, is a straight line. 4.There is perfect bond between steel arid concrete and no slip takes place between steel and concrete.
3. The modular ratio ' m ' has the value $=m=\frac{280}{3 \times 6_{\mathrm{cbc}}}$

Modular Ratio is defined as the Ratio between Modulus of Elasticity of Steel and Modulus of Elasticity of Concrete. This is because, a Reinforced Concrete is made up of Both Steel and Concrete. In this case, Steel is a Tension member and Concrete is a Compression Member.
$m=\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{c}}}$
$E_{s}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{c}}=5000 \sqrt{F_{c k}}$
$F_{c k}=$ Grade of Concrete in $\mathrm{N} / \mathrm{mm}^{2}$
Structural Properties
1.Compressive strength.
2.Tensile strength.
3.Modulus of elasticity and Poisson's ratio.,
4.Stress-strain relationship.
5.Shrinkage of Concrete
6.Creep of Concrete

1. Compressive Strength of Concrete

1. The compressive strength of hardened concrete is found by testing to failure 150 mm cubical (According to B.I.S) .) specimens after 28 days of standard curing. At least three specimens are made for test at specific age.
2. The compressive strength of concrete can also be found by testing to failure cylindrical specimens of diameter $=150 \mathrm{~mm}$ and height $=300 \mathrm{~mm}$. Such test is carried out in United States. In India, the concrete grade is based on cube strength and if the cylinder is tested, the strength should be modified into equivalent cube strength. The ratio of the cylinder strength to the cube strength may be taken to be 0.8 .

2.Tensile Strength of Concrete

Measurement of tensile strength by subjecting the specimen to direct tension is extremely difficult Therefore, indirect measurements for tensile strength are made. Tensile strength of concrete can be measured by two methods

1. Split-cylinder test (IS : 5816-1999)
2.Standard beam-test (modulus of rupture test) (IS :516)
2. Elastic Modulus of Concrete : The stress-strain curve for concrete is shown in Fig.2. It is obtained from a compression test on cylindrical specimens. Since, concrete is not an elastic material, therefore the obtained stress-strain curve for concrete is non-linear. The slope of the tangent drawn to the stress-strain curve is maximum at the origin and reduces to zero at the peak. To adopt this slope as the elastic modulus of concrete would be both erroneous. and inconvenient. However, the slope of the secant which is the line joining a point on the curve to the origin, does not vary too widely between the origin and the peak. As the lower portion of the stress-strain curve is relatively straight, an elastic modulus may be conveniently defined in that region. Thus, the elastic modulus of concrete is taken to be the slope of the secant drawn to the stress-strain curve at a point corresponding to 40% of the maximum stress. However, in the absence of test results, the modulus of elasticity is normally related to the compressive strength of concrete as
$\mathrm{E}_{\mathrm{c}}=5000 \sqrt{F_{c k}}$
$F_{c k}=$ Grade of Concrete in $\mathrm{N} / \mathrm{mm}^{2}$

Fig. 2. Stress strain behavior of concrete
4. Stress- Strain Curve for concrete

Stress block parameter

Stress- Strain Curve for concrete

5. Shrinkage of Concrete :

The contraction of concrete per unit length during the process of hardening is known as Shrinkage. The total shrinkage of concrete depends upon the constituents of concrete, size of the members, environmental conditions and percentage of steel. The shrinkage is a long process and continues for many years particularly for mass concrete, The designer must provide the shrinkage steel to prevent shrinkage cracks. Greater the percentage of steel, lesser is the shrinkage because the reinforcement restrains the shrinkage. A curve showing shrinkage strain against time after commencement of drying is shown in Figure From Fig.3., it is clear that the rate of Shrinkage decreases with time. The total shrinkage strain may be in the range of 0.0002 to 0.0007 The IS : 456 recommends a value for shrinkage to be 0.0003 for the purpose of design.

Fig.3. Shrinkage curve for concrete
6. Creep: A plastic deformation under sustain load

Methods of Design

The aim of design is to design, shape, size and connection details of the members so that the structural beam design will performed satisfactory during its right span. Following methods of design are used in concrete structures

1) Working Stress Method (WSM)
2) Ultimate Load Method (ULM)
3) Limit State Method (LSM)
4) Working Stress Method (WSM) :

Working Stress Method is the traditional method of design not only for Reinforced Concrete but also for structural steel and timber design. The conceptual basis of the WSM assumes that the structural material behaves in a linear elastic manner and that appropriate safety can be ensured by suitably limiting the stresses in the material due to the presumed working loads (service loads) on the structure. WSM also assumes that both the steel reinforcement and concrete act together and are perfectly elastic at all stages, and hence the modular ratio can be used to determine the stresses in steel and concrete. The stresses under the working loads are obtained by applying the methods of 'strength of materials' like the simple bending theory. The limitations due to non-linearity and buckling are neglected. The stresses caused by the 'characteristic' or service loads are checked against the permissible (allowable) stress, which is a fraction of the
ultimate or yield stress. The permissible stress may be defined in terms of a factor of safety, which takes care of the overload or other unknown factors.

Limitations of Working Stress Method

1.The main assumption of a linear elastic behavior and the implied assumption that the stresses under working loads can be kept within the 'permissible stresses' are found to be unrealistic. Many factors are responsible for this, such as the long-term effects of creep and shrinkage and other secondary effects.
2.The use of the imaginary concept of modular ratio results in larger percentage of compression steel and generally larger member sizes than the members designed using ultimate load or limit states design. However, as a result of the larger member sizes, they result in better performance during service.

2) Ultimate Load Method (ULM)

This is also known as load factor method or ultimate strength method. In this we make use of the nonlinear region of stress strain curves of steel and concrete. The safety is ensured by introducing load factor.

"Load factor is the ratio of ultimate strength to the service loads"

The ULM makes it possible to consider the effects of different loads acting simultaneously thus solving the shortcomings of WSM. As the ultimate strength of the material is considered we will get much slender sections for columns and beams compared to WSM method. But the serviceability criteria is not met because of large deflections and cracks in the sections. The fall-back in the method was that even though the nonlinear stress strain behaviour of was considered sections but the nonlinear analysis of the structural was not carried out for the load effects. Thus the stress distribution at ultimate load was just the magnification of service load by load factor following the linear elastic theory.

3) Limit State Method (LSM)

In limit state design method, the structure shall be designed withstand safety. All loads likely to act on it throughout its life span. It shall not suffer total collapse under accidental load such as from explosion or impact or human error to an extend beyond the local damages. The acceptable limit for safety, serviceability requirement before failure occurs it called limit state.
Steel structure are to be design and constructed to safety. The design requirement with regard to stability, strength, serviceability, brittle, fracture, fatigue, fire and durability such that they need the following points.
a) Remain free adequate re-ability be able to sustain all loads.
b) We have adequate durability under normal maintenance
c) Do not suffer overall damage as collapse

Sl. No.	Working Stress Method	Limit State Method
1.	This method is based on the elastic theory which assumes that concrete and steel are elastic, and the stress strain curve is linear for both.	This method is based on the actual stress-strain curves of steel and concrete. For concrete the stress-strain curve is non-linear.
2.	In this method the factor of safety is applied to the yield stresses to get permissible stresses.	In this method, partial safety factors are applied to get design values of stresses.
3.	No factor of safety is used for loads.	Design loads are obtained by multiplying partial safety factors of load to the working loads.
4.	Exact margin of safety is not known.	Exact margin of safety is known.
5.	This method gives thicker, sections, so less economical.	This method is more economical as it gives thinner sections.
6.	This method assumes that the actual loads, permissible stresses, and factors of safety are known. So it is called as deterministic method.	This method is based upon the probabilistic approach which depends upon the actual data or experience; hence it is called as non-deterministic method.
7.	Working stress method is also known as the plastic method	Limit State method is also known as the Elastic design
8.	In working stress method, the material follows Hooke's law as stress is not allowed to cross the yield limit.	Limit state method, stress is allowed to cross the yield limit.
9.	This method gives more large sections, therefore less economical.	This method is more economical since it gives thinner sections.
10	This method assumes that the actual loads, permissible pressures, and factors of safety have been understood. So it's called a deterministic method.	This way is based upon the probabilistic approach that depends upon the real data or expertise; thus it's referred to as a non-deterministic method.

Types of loads on steels structure:

1) Dead Load:

Dead loads are permanent and stationary load which are transferred to the structure thought there their life span. Dead load is primaralily due to self weight of structural member. Permanent partition wall fixed permanent equipment and weight of different material.

Plain concrete- $25 \mathrm{KN} / \mathrm{m}^{3}$
R.C.C concrete- $25 \mathrm{KN} / \mathrm{m}^{3}$

Soil-18 KN/m ${ }^{3}$
Rolled steel-79 KN/m ${ }^{3}$
IS Code used for dead load is IS 875-1987 Part-I

2) Live Load :

Live load are either moveable or moving load without any impact. These are assumed to be produced by the intended use or occupancy of the building including weight of movable portion. Live load is consider according to i.s. 875 part-II.

Sr.no	Type of load	Maximum live load
1	Residential building	$2 \mathrm{KN} / \mathrm{m}^{2}$
2	Bank, office	$3 \mathrm{KN} / \mathrm{m}^{2}$
3	Classroom assembly hall	$4 \mathrm{KN} / \mathrm{m}^{2}$
4	Workshop, factory:-	
	Light weight-	$5 \mathrm{KN} / \mathrm{m}^{2}$
	Medium weight-	$7.5 \mathrm{KN} / \mathrm{m}^{2}$
	Heavy weight-	$10 \mathrm{KN} / \mathrm{m}^{2}$

3) Wind Load:

Wind load basically horizontal load causes by movement of air. Wind load is required to be consider in the design specially when the height of building exceeds the two times of dimensions
transferred to expose surface. Wind depend upon intensity of wind pressure and shape of structure in case of truss design two type of wind type of wind pressure considered

1) Internal air pressure:-it depend on permeability of structure
2) External air pressure:-it depend on location of structure

Internal air pressure depends upon permeability of structure and external air pressure depends upon location.

IS Code used for wind load is 875 part-III.
4) Earthquake Load: If structure is situated in earthquake prone area, earthquake load may be considered due to earthquake shock structure vibration. Earthquake load are horizontal load caused by earthquake and shall be calculated in accordance with IS 1983 and revised IS 2017.
5) Snow Load: This depend upon latitude of placed. Design snow load depends upon shape of roof and this load act vertically and this load can be taken as $2.5 \mathrm{KN} / \mathrm{m}^{2}$ per mm depends of snow.
6) Imposed Load: Imposed load caused by vibrator or impact or acceleration of person walking, produce live load but soldiers marching or frame supporting lifts produced impact load. Thus impact load is equal to imposed load incremental by some percentage depending on the intensity of impact.
7) Hydrostatic Pressure: Pressure of water is to be considered which are below the ground level. Hydrostatics pressure is calculated from established theories.
8) Temperature Effects: Due to change in temperature in structural member, extract or contract and produced the loading effects in member.

Load Combination:

The combination of the load are necessary to ensure the required safety and economic design. Load combination as per IS 875 Part IV

Dead Load (DL)
Live Load (LL)
Wind Load (WL)
Earthquake Load (EL)

Temporary Load (TL)
Combination

1) $1.5(\mathrm{DL}+\mathrm{LL})$
2) $1.2(\mathrm{DL}+\mathrm{LL}+\mathrm{EL})$
3) 1.2 (DL+LL-EL)
4) $1.5(\mathrm{DL}+\mathrm{EL})$
5) 1.5 (DL - EL)
6) $0.9 \mathrm{DL}+1.5 \mathrm{EL}$
7) $0.9 \mathrm{DL}-1.5$ EL etc.

Design of Beam (WSM)

Singly and Doubly Reinforcement of beam

Beam can be defined as a structural member which carries all vertical loads and resists it from bending. There are various types of materials used for beam such as steel, wood, aluminum etc. But the most common material is reinforced cement concrete (RCC).

Depending upon different criteria RCC beam can be of different types such as -
Depending upon shape beams can be T-beam, rectangular beam, etc.
Depending upon placement of reinforcement - singly reinforced beam, doubly reinforced beam and Flanged beams etc.

Singly reinforced beam: The beam that is longitudinally reinforced only in tension zone, it is known as a singly reinforced beam. In Such beams, the ultimate bending moment and the tension due to bending are carried by the reinforcement, while the compression is carried by the concrete. But it is not possible to provide reinforcement only in the tension zone, because we need to tie the stirrups. Therefore, two rebars are used in the compression zone to tie the stirrups, and the rebars act as false members only to hold the stirrups.

Doubly reinforced beam: The doubly reinforced beams have compression reinforcement in addition to the tension reinforcement, and this compression reinforcement can be on both sides of the beam (top or bottom face), depending on the type of beam, that is, simply supported or cantilever, respectively. The beam that is reinforced with steel in the tension and compression zone is known as the doubly reinforced beam. This type of beam is provided mainly when the depth of the beam is restricted. If a beam with limited depth is reinforced only on the tension side, it may not be strong enough to withstand the bending moment. The resistance moment cannot be increased by increasing the amount of steel in the stress zone. To increase, the beam is reinforced, but not more than 25%, on the tensioned side. Thus, a doubly reinforced beam is provided to increase the strength moment of a beam with limited dimensions. Steel reinforced beams in compression and tension zones are called doubly reinforced beams.

Flanged beams (T-Beams and L-Beams): The beams in which a portion of the slab acts together with the beam for resisting compression stress are called as flanged beams.

Balancedsections

Such type of section_In which concrete and Steel attain its Permissible strength is termed as balanced section or critical section or economical section.

Such types of section in which steel attain its permissible stress but concrete attain stress lower than its permissible stress.

Such type of section in which concrete attain its permissible strength but steel remain below to its permissible strength.

This type sections occurs when amount of provided steel is neither less nor more than the steel required for a critical section.
In this type of sections critical Neutral axis and Actual neutral axis are same line.

This type of sections occurs when area of provided steel is less than the area of steel required for balanced section.

Actual Neutral axis remains above than the critical neutral axis.

This type sections occurs when area of provided steel is more than the area of steel required for balanced section.

Actual neutral axis remains below than critical neutral axis.

Stress diagram		Stress diagram
Moment of resistence, $\begin{aligned} \text { MR } & =\operatorname{bn}_{\mathrm{c}} \sigma_{\mathrm{dcx}} \frac{\left(d-\mathrm{n}_{\mathrm{c}} / 3\right)}{2} \\ & =\sigma_{s t} \mathrm{~A}_{\mathrm{st}}(\mathrm{~d}-\mathrm{n} / 3) \\ & =\mathrm{Qbd}^{2} \end{aligned}$	Moment of resistence, $\begin{aligned} M R & =b n \sigma^{\prime} \text { dxe } \frac{(d-n / 3)}{2} \\ & =\sigma_{s t} A_{s t}(d-n / 3) \end{aligned}$	Moment of resistence, $\begin{aligned} M R & =b n \sigma_{c b c} \frac{(d-n / 3)}{2} \\ & =\sigma_{s t}^{\prime} A_{s t}(d-n / 3) \end{aligned}$

A singly reinforced beam section is shown in Fig. 2.3(a). To analyse this section, it is necessary to convert it into a transformed or equivalent section of concrete.

Equivalent or Transformed Section

As per the assumption (3), all the tensile stresses are taken by steel and none by concrete i.e., concrete in the tensile zone is cracked. So, the concrete area below the neutral axis is neglected and the effective area or the equivalent area of the section in terms of concrete is shown in Fig. 2.3(b). The equivalent area is equal to the area of concrete in the compression zone and an additional concrete area $\mathrm{mA}_{\text {st }}$ of concrete corresponding to steel area, A_{st}

Strain Diagram

As per the assumption (1) of elastic theory, the strain distribution is linear, with value zero at the neutral axis to maximum at the top and bottom fibre. The strain diagram for the given R.C.C. section is shown in Fig. 2.3(c).

Stress Diagram

As per the assumption (4) of the elastic theory the stress-strain relationship is linear for concrete. So, the stress diagram is also a straight line with value zero at neutral axis and varying linearly with the distance as shown in Fig. 2.3(d).

Maximum permissible stress at the top most fibre in concrete $=\sigma_{\mathrm{cbc}}$

Maximum permissible stress in steel $=\sigma_{\text {st }}$
Maximum stress in equivalent concrete area at the level of steel $=\sigma s t / m$

Note: 1. The suffix cbc in σ_{cbc} stands for permissible stress in concrete in bending compression.
2. The suffix $s t$ in $\sigma_{\text {st }}$ stands for permissible stress in steel in tension.

Neutral Axis (n)
Neutral axis lies at the centre of gravity of the section. It is defined as that axis at which the stresses are zero. It divides the section into tension and compression zone. The position of the neutral axis depends upon the shape (dimensions) of the section and the amount of steel provided. The position of neutral axis of any rectangular section can be found by the following two methods :

Let us consider the R.C.C. section shown in Fig. 2.4(a) the stress σ_{cbc} in concrete's top most fibre and $\sigma_{\text {st }}$ in steel reinforcement are known.

From stress diagram:
$\frac{6_{c b c}}{n}=\frac{6_{s t} / m}{d-n}$

From Similar triangles
$\frac{m 6_{c b c}}{6_{s t}}=\frac{n}{d-n}$

If the stresses in concrete and steel are permissible then equation for n is written as

$$
\frac{m 6_{c b c}}{6_{s t}}=\frac{n}{d-n}
$$

This neutral axis, corresponding to permissible values of stresses of concrete and steel is called as critical neutral axis n_{c}.
$n_{c}=\mathrm{kd} \quad$ where k is the neutral axis depth factor.
$\frac{m 6_{c b c}}{6_{s t}}=\frac{k d}{d-k d}$

On rearranging, we get
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}$

Putting $m=\frac{280}{3 \times 6_{\mathrm{cbc}}}$
n the above equation for k , we can see that k does not depend upon grade of concrete. It depends upon grade of steel only.
$k=\frac{(280 / 3)}{(280 / 3)+6_{s t}}$

The moment of the tensile and compressive area should be equal at the neutral axis. The neutral axis obtained by this method is called as actual neutral axis.

Moment of compressive area $=$ Area in compression \times Distance between c.g. of compressive area and neutral axis

Moment of compressive area $=$ b.n. $\frac{n}{2}=b \cdot \frac{n^{2}}{2}$

Moment of tensile area $=$ Equivalent tensile area \times Distance of centroid of steel reinforcement from neutral axis

Moment of tensile area $=\mathrm{m} . \operatorname{Ast} \times(\mathrm{d}-\mathrm{n})$

Moment of compressive area $=$ Moment of tensile area
b. $\frac{n^{2}}{2}=\mathrm{m} . \operatorname{Ast} \times(\mathrm{d}-\mathrm{n})$

It is a quadratic equation which will give two values of n. Out of these two values only one value (+ve) of n is possible.

Lever Arm

Lever arm is the distance between the resultant compressive force and the resultant tensile force. It is denoted as a in the stress diagram. As the compressive area is triangular, the resultant compressive force (C) will act at $\frac{n}{3}$
from the top compressive fibre. The resultant tensile force (T) will act the centroid of the steel reinforcement.

Lever $\operatorname{arm}=z=d-\frac{n}{3}$
it is also expressed as $\mathrm{z}=\mathrm{jd}$ where j is the lever arm depth factor.
$j d=d-\frac{k d}{3}$
$j=1-\frac{k}{3}$

Moment of Resistance ($\mathbf{M r}_{\mathrm{r}}$)

Moment of resistance is the resistance offered by the beam against external loads. As there is no resultant force acting on the beam and the section is in equilibrium, the total compressive force is equal to the total tensile force. These two forces (equal and opposite separated by a distance) will form a couple (Fig. 2.5) and the moment of this couple is equal to the resisting moment or moment of resistance of the section.

Total compression $=\mathrm{C}=\frac{1}{2} 6_{c b c} \mathrm{~b} \mathrm{n} \quad$ acting at $\frac{n}{3}$
from top

Total tension $=T=6_{s t} \mathrm{~A}_{\mathrm{st}}$ acting at centroid of steel reinforcement.

Moment of resistance $=\mathrm{C} . \mathrm{z} \quad$ or $\mathrm{T} . \mathrm{z}$
$M r=\frac{1}{2} 6_{c b c} \mathrm{bn}\left[\mathrm{d}-\frac{n}{3}\right] \quad$ for compression $\quad \mathrm{I}$
$M r=6_{s t} \mathrm{~A}_{\text {st }}\left[\mathrm{d}-\frac{n}{3}\right] \quad$ for tension II

Putting $\mathrm{n}=\mathrm{kd}$ in the equation (I),
$M r=\frac{1}{2} \sigma_{c b c} \mathrm{~b}$ kd $\left[\mathrm{d}-\frac{k d}{3}\right]$
$M r=\frac{1}{2} \sigma_{c b c} \mathrm{k}\left[1-\frac{k}{3}\right] \mathrm{bd}^{2}$
$M r=\frac{1}{2} \sigma_{c b c} \mathrm{k} \mathrm{j} \mathrm{bd}^{2}$
$M r=\mathrm{Qbd}^{2}$
where Q is called as resisting moment factor.
$Q=\frac{1}{2} \sigma_{c b c} \mathrm{kj}$

Percentage of Steel $\boldsymbol{P}_{\boldsymbol{t}}$

Equating compressive force C to tensile force T
$b n \frac{6_{c b c}}{2}=6_{s t} \mathrm{~A}_{\mathrm{st}}$
For balanced section
$\mathrm{n}=\mathrm{kd}$
$\frac{b k d 6_{c b c}}{2}=6_{s t} \mathrm{~A}_{\mathrm{st}}$
$\frac{\mathrm{A}_{\mathrm{st}}}{b d}=\frac{6_{c b c} k}{26_{s t}}$
Percentage steel
$p_{t}=\frac{\mathrm{A}_{\text {st }}}{b d} x 100$
$\mathrm{P}_{\mathrm{t}}=\frac{6_{\text {cbc }} \mathrm{x} \mathrm{k}}{2 \times 6_{\text {st }}} \times 100$

The factor k, j and Q are constant for a given type of steel and concrete and do not depend upon the beam dimension. These are called as design constants. The value of k, j, Q and P_{t} are given in Table

$\begin{aligned} & \mathrm{Sr} \\ & \mathbf{N} \\ & \mathbf{o} \end{aligned}$	Grad e of Conc rete	Permissi ble stress in concre te in bending compressi on (6 cbc)	Modular Ratio (m) $m=\frac{280}{3 \times 6_{\mathrm{cbc}}}$	$\begin{gathered} F_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2} \& 6_{\mathrm{st}}=140 \mathrm{~N} / \mathrm{mm}^{2}(\text { Up to \& Including } 20 \\ \mathrm{mm} \text { Diameter) } \\ F_{y}=250 \mathrm{~N} / \mathrm{mm}^{2} \& 6_{\mathrm{st}}=130 \mathrm{~N} / \mathrm{mm}^{2} \text { (over } 20 \mathrm{~mm} \text { Diameter) } \end{gathered}$			
				$\begin{gathered} \mathbf{k} \\ k=\frac{\mathrm{mx} 6_{\mathrm{cbc}}}{\mathrm{~m} \times 6_{\mathrm{cbc}}+6_{\mathrm{st}}} \end{gathered}$	$j=1-\frac{k}{3}$	$\begin{gathered} \mathbf{Q} \\ Q=\frac{6_{\mathrm{cbc}} \times \mathrm{kxj}}{2} \end{gathered}$	$\begin{gathered} \mathbf{p t}_{\mathrm{t}} \\ p_{t}=\frac{6_{\mathrm{cbc}} \times \mathrm{k}}{2 \times 6_{\mathrm{st}}} \times 100 \end{gathered}$
1	M_{15}	5.0	18.67	0.4	0.867	0.867	0.72
2	M_{20}	7.0	13.33	0.4	0.867	1.214	1.0
3	M_{25}	8.5	10.98	0.4	0.867	1.48	1.21
4	M_{30}	10.0	9.33	0.4	0.867	1.73	1.43

$\begin{aligned} & \mathrm{Sr} \\ & \mathrm{~N} \\ & \mathbf{o} \end{aligned}$	Grad e of Conc rete	Permissi ble stress in concre te in bending compressi on (6cbc)	Modular Ratio (m) $m=\frac{280}{3 \times 6_{\mathrm{cbc}}}$	$F_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \& 6 \mathrm{st}=230 \mathrm{~N} / \mathrm{mm}^{2}$			
				$\begin{gathered} \mathbf{k} \\ k=\frac{\mathrm{mx} 6_{\mathrm{cbc}}}{\mathrm{~m} \times 6_{\mathrm{cbc}}+6_{\mathrm{st}}} \end{gathered}$	$j=1-\frac{k}{3}$	$\begin{gathered} \mathbf{Q} \\ Q=\frac{6_{\mathrm{cbc}} \times \mathrm{kxj}}{2} \end{gathered}$	$\begin{gathered} \mathbf{p t}_{\mathrm{t}} \\ p_{t}=\frac{6_{\mathrm{cbc}} \times \mathrm{k}}{2 \times 6_{\mathrm{st}}} \times 100 \end{gathered}$
1	M_{15}	5.0	18.67	0.29	0.904	0.65	0.314
2	M_{20}	7.0	13.33	0.29	0.904	0.914	0.44
3	M_{25}	8.5	10.98	0.29	0.904	1.11	0.534
4	M_{30}	10.0	9.33	0.29	0.904	1.306	0.628

$\mathbf{S r}$ N 0	Grad e of Conc rete	Permissi ble stress in concre te in bending compressi on (6cbc)	Modular Ratio (m) $m=\frac{280}{3 \times 6_{\mathrm{cbc}}}$	$\mathrm{F}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2} \& 6 \mathrm{~s}_{\text {st }}=0.55 \times 500=275 \mathrm{~N} / \mathrm{mm}^{2}$			
				$\begin{gathered} \mathbf{k} \\ k=\frac{\mathrm{mx} 6_{\mathrm{cbc}}}{\mathrm{~m} \times 6_{\mathrm{cbc}}+6_{\mathrm{st}}} \end{gathered}$	$j=1-\frac{k}{3}$	$\begin{gathered} \mathbf{Q} \\ Q=\frac{6_{\mathrm{cbc}} \times \mathrm{kxj}}{2} \end{gathered}$	$\begin{gathered} \mathbf{p t}_{\mathbf{t}} \\ p_{t}=\frac{6_{\mathrm{cbc}} \times \mathrm{k}}{2 \times 6_{\mathrm{st}}} \times 100 \end{gathered}$
1	M_{15}	5.0	18.67	0.25	0.916	0.58	0.23
2	M_{20}	7.0	13.33	0.25	0.916	0.81	0.32
3	M_{25}	8.5	10.98	0.25	0.916	0.985	0.39
4	M_{30}	10.0	9.33	0.25	0.916	1.16	0.46

Formulae

1) Modular Ratio (m) (IS 456:2000, P .No:80, C. No: B-1.3)

$$
m=\frac{280}{3 \times 6_{\mathrm{cbc}}}
$$

2) Neutral Axis depth factor (k)

$$
k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}
$$

3) Lever arm factor (j)

$$
j=1-\frac{k}{3}
$$

4) Moment resisting factor (Q)
$\mathrm{Q}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{jk}$
5) Critical moment resistance (Mr)
$\mathrm{Mr}=Q b d^{2}$
$\mathrm{Q}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{jk}$
6) Tensile Force (T)
$\mathrm{T}=\mathrm{A}_{\mathrm{st}} \mathrm{K}_{\mathrm{st}}$
OR
$\mathrm{T}=m . A_{s t} \times(d-n)$
7) Compressive force (C)
$C=b \cdot \frac{n^{2}}{2}$
OR
$C=\frac{1}{2} \sigma_{\mathrm{cbc}} \mathrm{xbxn}$
8) Depth of neutral axis (n)
$\mathrm{C}=\mathrm{T}$
b. $\frac{n^{2}}{2}=m \cdot A_{s t} \times(d-n)$
$\mathrm{n}=$?
9) Depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
10) Lever Arm (z)

Lever $\operatorname{arm}=\mathrm{z}=\left(\mathrm{d}-\frac{n}{3}\right)$
11) Moment of resistance (Mr)
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{C}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
12) Moment of resistance (Mr)
$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{xbxn}\left(\mathrm{d}-\frac{n}{3}\right)$
13) Area of steel
$A_{s t}=\frac{M}{6_{s t} j d}$
14) Percentage of steel
$p_{t}=\frac{\mathrm{A}_{\text {st }}}{b d} x 100$
$\mathrm{P}_{\mathrm{t}}=\frac{6_{\text {cbc }} \mathrm{x} \mathrm{k}}{2 \times 6_{\text {st }}} \times 100$
15) If $\mathrm{n} \prec \mathrm{n}_{\mathrm{c}}$ then section is under reinforced
16) If $n=n_{c}$ then section is balance section
17) If $n>n_{c}$ then section is over reinforced, if section is over reinforced then consider it as balance section.

IN SINGLY REINFORCED BEAM THERE ARE THREE TYPES OF PROBLEMS

1) To find moment of resistance of section
2) To find the maximum tensile stress $\left(6_{s t}\right)$ in steel and compression stress $\left(6_{c b c}\right)$ in concrete
3) To find the area of tensile Steel $\left(\mathrm{A}_{\mathrm{st}}\right)$

Type I
To find moment of resistance of section

Stepwise Procedure
To find :- The moment of resistance of section

Given Data:- b,d,,Ast, Fy, Fck
d = D - Effective cover
$\mathbf{d}=\mathbf{D}-\mathbf{d}^{\prime}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$6_{c b c}=? N / m^{2}($ IS 456:2000, Table No: 21, P No:81)
$6_{\text {st }}=? \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22 , P No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}$ (IS 456:2000, P .No:80, C. No: B-1.3)

STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$
$\mathrm{n}=$?
STEP 2: To find depth of critical neutral axis (\mathbf{n}_{c})

$$
\begin{aligned}
& n_{c}=k d \\
& k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}
\end{aligned}
$$

STEP 3: To compare n and n_{c}
a) If $n \prec n_{c}$ then section is under reinforced
b) If $n=n_{c}$ then section is balance section
c) If $\mathrm{n}>\mathrm{n}_{\mathrm{c}}$ then section is over reinforced, if section is over reinforced then consider it as balance section.

STEP 4: To find moment of resistance
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{K}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
STEP 5: To find superimposed load
Superimposed load $=$ Total working load - self weight of beam
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=$ b X D X 25
Density of Concrete $=25 \mathrm{KN} / \mathrm{m}^{3}$
Examples

1) A reinforced concrete beam $250 \mathrm{~mm} \times 300 \mathrm{~mm}$ overall depth is reinforced with 3 bars of 12 mm diameter at the bottom. The clear cover of 25 mm , Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of $\mathbf{3} \mathbf{~ m}$. Used Fe 250 and M_{15}. Using WSM.

Solution:- To find :- The moment of resistance of section
Given Data:- b $=\mathbf{2 5 0} \mathbf{~ m m}$
D $=\mathbf{3 0 0} \mathbf{~ m m}$
$\phi=12 \mathrm{~mm}$
No of bar $=3$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ =Effective cover $=\mathbf{2 5}+\frac{12}{2}=31 \mathrm{~mm}$
Effective depth =d = D - d' = 300-31 = $\mathbf{2 6 9} \mathbf{~ m m}$
Ast $=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 12^{2}=339.29 \mathrm{~mm}^{2}$
$\mathrm{L}=3 \mathrm{~m}$
$\mathrm{M}_{15}, \quad \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 250, , $_{\text {st }}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 5}=18.666$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$
$250 x \frac{n^{2}}{2}=18.666 \times 339.29 x(269-n)$
$125 n^{2}=6333.18(269-n)$
$125 n^{2}=1.703 \times 10^{6}-6333.18 n$
$125 n^{2}+6333.18 n-1.703 \times 10^{6}=0$
$n=94.006 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.666 \times 5}{(18.666 \times 5)+140}=0.3999$
$n_{c}=0.3999 \times 269=107.57 \mathrm{~mm}$
STEP 3: To compare n and \mathbf{n}_{c}
$\mathbf{n} \prec \mathrm{n}_{\mathrm{c}}$
$94.006<107.57$
then section is under reinforced
STEP 4: To find moment of resistance
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} 6_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$\mathrm{Mr}=339.29 \times 140 \times\left(269-\frac{94.006}{3}\right)$
$\mathrm{Mr}=11.2892 \times 10^{6} \mathrm{Nmm}=11.2892 \mathrm{KNm}$
STEP 5: To find superimposed load

Maximum bending moment $=\frac{W l^{2}}{8}=\frac{W x 3^{2}}{8}=1.125 \mathrm{~W}$
Equating (1) and (2)
$11.2892=1.125 \mathrm{~W}$
$\mathrm{W}=10.03 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=\mathrm{b}$ X D X $25=(0.25 \times 0.3) \mathrm{X} 25$
Self weight of beam $=1.875 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=10.03-1.875=8.159 \mathrm{KN} / \mathrm{m}$

2) A reinforced concrete beam $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ overall depth is reinforced with 4 bars of 12 mm diameter at the bottom. The clear cover of 25 mm , Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of $\mathbf{4} \mathbf{~ m}$. Used Fe 250 and M_{15}. Using WSM.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{2 5 0} \mathbf{~ m m}$
$D=400 \mathrm{~mm}$
$\phi=12 \mathrm{~mm}$
No of bar $=4$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{12}{2}=31 \mathrm{~mm}$
Effective depth =d = D - d' = 400 - $\mathbf{- 1 1}=\mathbf{3 6 9} \mathbf{~ m m}$

Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 12^{2}=452.39 \mathrm{~mm}^{2}$
$\mathrm{L}=4 \mathrm{~m}$
$M_{15}, \quad 6_{\text {cbc }}=5 \mathrm{~N} / \mathrm{mm}^{2}($ IS 456:2000, Table No: 21, P No:81)
Fe 250, 6 $_{\text {st }}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
$m=\frac{280}{3 \times 6_{c b c}}=\frac{280}{3 \times 5}=18.666$ (IS 456:2000, P .No:80, C. No: B-1.3)

STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$
$250 x \frac{n^{2}}{2}=18.666 \times 452.39 x(369-n)$
$125 n^{2}=8444.31(369-n)$
$125 n^{2}=3.115 \times 10^{6}-8444.31 n$
$125 n^{2}+8444.31 n-3.115 \times 10^{6}=0$
$n=127.65 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (\mathbf{n}_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.666 x 5}{(18.666 \times 5)+140}=0.3999$
$n_{c}=0.3999 \times 369=147.563 \mathrm{~mm}$
STEP 3: To compare n and n_{c}
$\mathbf{n} \prec \mathrm{n}_{\mathrm{c}}$
$127.65<147.563$
then section is under reinforced
STEP 4: To find moment of resistance
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{S}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$\mathrm{Mr}=452.39 \times 140 \times\left(369-\frac{127.67}{3}\right)$
$\mathrm{Mr}=20.6751 \times 10^{6} \mathrm{Nmm}=20.6751 \mathrm{KNm}$

STEP 5: To find superimposed load

Maximum bending moment $=\frac{W 1^{2}}{8}=\frac{W x 4^{2}}{8}=2 \mathrm{~W}$.
Equating (1) and (2)
$20.675=2 \mathrm{~W}$
$\mathrm{W}=10.3375 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b \times D X 25=(0.25 \times 0.4) \times 25$
Self weight of beam $=2.5 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=10.3375-2.5=7.8375 \mathrm{KN} / \mathrm{m}$

3) A reinforced concrete beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ overall depth is reinforced with 4 bars of 16 mm diameter on tension side with 40 mm effective cover. Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of $5 \mathbf{m}$. Used Fe 250 and M_{15}. Using WSM.

Solution:- To find :- The moment of resistance of section
Given Data:- b=300 mm
$D=500 \mathrm{~mm}$
$\phi=16 \mathrm{~mm}$
No of bar $=4$
d'=Effective cover $=40 \mathrm{~mm}$
Effective depth =d = D - d' = 500 - $\mathbf{- 4 0}=\mathbf{4 6 0} \mathbf{~ m m}$
Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 16^{2}=804.25 \mathrm{~mm}^{2}$
$\mathrm{L}=5 \mathrm{~m}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)

Fe 250 , 6 $_{\text {st }}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 5}=18.666$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$
$300 x \frac{n^{2}}{2}=18.666 \times 804.25 x(460-n)$
$150 n^{2}=15012.13(460-n)$
$150 n^{2}=6.9055 \times 10^{6}-15012.13 n$
$150 n^{2}+15012.13 n-6.9055 \times 10^{6}=0$
$n=170.279 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.666 \times 5}{(18.666 \times 5)+140}=0.3999$
$n_{c}=0.3999 \times 460=183.954 \mathrm{~mm}$
STEP 3: To compare \mathbf{n} and $\mathbf{n}_{\mathbf{c}}$
$\mathbf{n} \prec \mathrm{n}_{\mathrm{c}}$
$170.279<183.954$
then section is under reinforced
STEP 4: To find moment of resistance
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{S}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$\mathrm{Mr}=804.25 \times 140 \times\left(460-\frac{170.279}{3}\right)$
$\mathrm{Mr}=45.400 \times 10^{6} \mathrm{Nmm}=45.400 \mathrm{KNm}$

STEP 5: To find superimposed load

Maximum bending moment $=\frac{W I^{2}}{8}=\frac{W x 5^{2}}{8}=3.125 \mathrm{~W}$.
Equating (1) and (2)
$45.40=3.125 \mathrm{~W}$
$\mathrm{Wu}=14.528 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b \times$ D X 25 $=(0.3 \times 0.5) \times 25$
Self weight of beam $=3.75 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=14.528-3.75=10.778 \mathrm{KN} / \mathrm{m}$

Type II :- To find the maximum tensile stress ($\mathbf{6}_{\mathrm{st}}$) in steel and compression stress ($\mathbf{6}_{\mathrm{cbc}}$) in concrete

Given Data:

STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$
$\mathrm{n}=$?
STEP 2: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{K}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$6_{\mathrm{st}}=$?
STEP 3: To find maximum stress in concrete ($\mathbf{6}_{\text {cbc }}$)
$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} \sigma_{\mathrm{cbc}} \mathrm{xb} \times \mathrm{n}\left(\mathrm{d}-\frac{n}{3}\right)$
$6_{\mathrm{cbc}}=$?

1) Calculate the maximum compression stress in concrete and tensile stress in reinforcing steel for a R.C beam of 3.6 m effective span having cross section of $\mathbf{3 0 0} \mathbf{~ m m} \times 600 \mathrm{~mm}$ overall depth with 4 bars of 20 mm diameter and clear cover of 25 mm . The beam is loaded with a superimposed udl of $\mathbf{8 0} \mathrm{KN} / \mathrm{m}$. Use $\mathbf{m = 1 8 . 6 6}$ using WSM.
Solution :
Given Data:- b = $\mathbf{3 0 0} \mathbf{~ m m}$
$D=\mathbf{6 0 0} \mathrm{mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=4$
Clear Cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ clear cover $+\frac{\phi}{2}=25+(20 / 2)=35 \mathrm{~mm}$

Effective depth =d = D - d' = 600-35=565 mm
Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 20^{2}=1256.63 \mathrm{~mm}^{2}$
$\mathrm{L}=3.6 \mathrm{~m}$
$\mathrm{m}=18.66$
$\mathbf{u d l}=\mathbf{8 0} \mathrm{KN} / \mathbf{m}$

3.6 m

Maximum bending moment $=\frac{W l^{2}}{8}=\frac{80 \times 3.6^{2}}{8}=129.6 \mathrm{KNm}$

STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$

$$
\begin{aligned}
& 300 x \frac{n^{2}}{2}=18.66 \times 1256.63 \times(565-n) \\
& 150 n^{2}=23448.84(565-n) \\
& 150 n^{2}=13.2485 \times 10^{6}-23448.843 n \\
& 150 n^{2}+23448.843 n-13.2485 \times 10^{6}=0 \\
& n=229.136 \mathrm{~mm}
\end{aligned}
$$

STEP 2: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} 6_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$129.6 \times 10^{6}=1256.63 \times 6_{\text {st }} \times\left(565-\frac{229.136}{3}\right)$
$6_{\mathrm{st}}=211.06 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 3: To find maximum stress in concrete ($\mathbf{6}_{\mathrm{cbc}}$)
$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{xbxn}\left(\mathrm{d}-\frac{n}{3}\right)$
$129.6 \times 10^{6}=\frac{1}{2} 6_{\mathrm{cbc}} \times 300 \times 229.136 \times\left(565-\frac{229.136}{3}\right)$
$6_{\mathrm{cbc}}=7.7169 \mathrm{~N} / \mathrm{mm}^{2}$
2) Calculate the maximum compression stress in concrete and tensile stress in reinforcing steel for a R.C beam of $\mathbf{6} \mathbf{m}$ effective span having cross section of $\mathbf{3 0 0} \mathbf{~ m m ~ X ~} 500 \mathrm{~mm}$ effective depth with 3 bars of $\mathbf{1 6} \mathbf{~ m m}$ diameter. The beam is loaded with a superimposed udl of $\mathbf{1 0}$ KN/m. Use M_{20} using WSM.
Solution :
Given Data:- b $\mathbf{= 3 0 0} \mathbf{~ m m}$
Effective depth $=\mathbf{d}=\mathbf{5 0 0} \mathbf{~ m m}$
$\phi=16 \mathrm{~mm}$
No of bar $=3$

Ast $=\mathbf{3 X} \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 16^{2}=603.185 \mathrm{~mm}^{2}$
$\mathrm{L}=6 \mathrm{~m}$
$\mathrm{M}_{20}, \mathbf{6}_{\mathrm{cbc}}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 7}=13.33$
$\mathbf{u d l}=\mathbf{1 0} \mathrm{KN} / \mathrm{m}$

STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$

$$
\begin{aligned}
& 300 x \frac{n^{2}}{2}=13.33 \times 603.185 \times(500-n) \\
& 150 n^{2}=8040.4563(500-n) \\
& 150 n^{2}=4.020 \times 10^{6}-8040.4563 n \\
& 150 n^{2}+8040.4563 n-4.020 \times 10^{6}=0 \\
& n=139.084 \mathrm{~mm}
\end{aligned}
$$

STEP 2: To find maximum stress in steel $\left(6_{\text {st }}\right)$
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} 6_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$45 \times 10^{6}=603.185 \times 6_{\mathrm{st}} \times\left(500-\frac{139.084}{3}\right)$
$6_{\mathrm{st}}=164.45 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 3: To find maximum stress in concrete ($\mathbf{6}_{\mathrm{cbc}}$)
$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{b} \times \mathrm{n}\left(\mathrm{d}-\frac{n}{3}\right)$
$45 \times 10^{6}=\frac{1}{2} 6_{\mathrm{cbc}} \times 300 \times 139.084 \times\left(500-\frac{139.084}{3}\right)$
$6_{\mathrm{cbc}}=4.7548 \mathrm{~N} / \mathrm{mm}^{2}$
3) Calculate the maximum compression stress in concrete and tensile stress in reinforcing steel for a R.C beam of 3.6 m effective span having cross section of $300 \mathrm{~mm} X 700 \mathrm{~mm}$ overall depth with 4 bars of 25 mm diameter and effective cover of 30 mm . The beam is having $B M$ of 130 KNm . Use $\mathbf{m}=\mathbf{1 8 . 6 6}$ using WSM.

Given Data: - b=300 mm
$D=$ Overall depth $=700 \mathrm{~mm}$
d'=Effective cover $=30 \mathbf{~ m m}$

Effective depth =d = D - d' = 700-30=670 mm
$\phi=25 \mathrm{~mm}$
No of bar $=4$
Ast $=\mathbf{4 X} \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 25^{2}=1963.495 \mathrm{~mm}^{2}$
B. $\mathrm{M}=\mathrm{M}=\mathbf{1 3 0} \mathbf{K N m}=130 \times 10^{6} \mathbf{~ N m m}$
$m=18.66$
STEP 1: To find depth of neutral axis (n)

$$
\mathrm{C}=\mathrm{T}
$$

b. $\frac{n^{2}}{2}=\mathrm{m} . \mathrm{A}_{\mathrm{st}} \times(\mathrm{d}-\mathrm{n})$

$$
\begin{aligned}
& 300 x \frac{n^{2}}{2}=18.66 \times 1963.495 \times(670-n) \\
& 150 n^{2}=36638.81(670-n) \\
& 150 n^{2}=24.5480 \times 10^{6}-36638.81 n \\
& 150 n^{2}+36638.81 n-24.5480 \times 10^{6}=0 \\
& n=300.444 \mathrm{~mm}
\end{aligned}
$$

STEP 2: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$\mathrm{Mr}=\mathrm{T} \mathrm{z}$
$\mathrm{Mr}=\mathrm{A}_{\mathrm{st}} \mathrm{C}_{\mathrm{st}}\left(\mathrm{d}-\frac{n}{3}\right)$
$130 \times 10^{6}=1963.495 \times 6_{\text {st }} \times\left(670-\frac{300.444}{3}\right)$
$6_{\mathrm{st}}=116.185 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 3: To find maximum stress in concrete ($\mathbf{6}_{\mathrm{cbc}}$)

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{C} \mathrm{z} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{b} \times \mathrm{n}\left(\mathrm{~d}-\frac{n}{3}\right) \\
& 130 \times 10^{6}=\frac{1}{2} 6_{\mathrm{cbc}} \times 300 \times 300.444 \times\left(670-\frac{300.444}{3}\right) \\
& 6_{\mathrm{cbc}}=5.0620 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Type III :- To find the area of tensile Steel (Ast)

Given Data;

STEP 1: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}$
STEP 2: To find moment of resistance

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{Cz} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{xbxn}_{c}\left(\mathrm{~d}-\frac{n_{c}}{3}\right)
\end{aligned}
$$

STEP 3: To equate BM (M) and Ultimate moment (Mr)
STEP 4: To find area of steel (A_{st})
$A_{s t}=\frac{M}{6_{s t} j d}$
$j=1-\frac{k}{3}$
$A_{s t}=$?
Assume diameter of bar $=\boldsymbol{\Phi}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=$

1) The cross section of a rectangular beam has to resist a bending moment of 100 KNm . If the beam is 250 mm wide. Find effective depth and tensile reinforcement required. Use M_{15} and Fe 250. Use WSM

Solution:

$B M=M=100 \mathrm{KNm}=100 \times 10^{6} \mathrm{Nmm}$
$b=250 \mathrm{~mm}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=\mathbf{5} \mathrm{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 250, 6 $_{\text {st }}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 5}=18.66$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.66 \times 5}{(18.66 \times 5)+140}=0.3999$
$n_{c}=0.3999 \mathrm{~d}$
STEP 2: To find moment of resistance

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{C} \mathrm{z} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{bxn}_{\mathrm{c}}\left(\mathrm{~d}-\frac{n_{c}}{3}\right) \\
& \mathrm{Mr}=\frac{1}{2} \times 5 \times 250 \times 0.3999 \mathrm{~d}\left(\mathrm{~d}-\frac{0.3999 d}{3}\right) \\
& \mathrm{Mr}=216.62 d^{2}
\end{aligned}
$$

STEP 3: To equate BM (M) and Ultimate moment (Mr)
$100 \times 10^{6}=216.62 \mathrm{~d}^{2}$
$\mathbf{d}=\mathbf{6 7 9 . 4 3} \mathbf{~ m m} \cong 680 \mathrm{~mm}$
STEP 4: To find area of steel (A_{st})

$$
\begin{aligned}
& A_{s t}=\frac{M}{6_{s t} j d} \\
& j=1-\frac{k}{3}=1-\frac{0.3999}{3}=0.8667 \\
& A_{s t}=\frac{100 \times 10^{6}}{140 \times 0.8667 \times 680}=1211.97 \mathrm{~mm}^{2}
\end{aligned}
$$

Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1211.97}{(\pi / 4) \times 20^{2}}=3.857 \cong 4$
2) Design a reinforced concrete beam subjected to a bending moment of $\mathbf{3 0} \mathrm{KNm}$. Use M_{20} and Fe 415. Keep width of beam equal to half the effective depth. Use WSM

Solution:

Given Data:-

$B M=M=30 \mathbf{K N m}=30 \times 10^{6} \mathbf{N m m}$
$\mathrm{M}_{20}, \mathbf{6}_{\mathrm{cbc}}=\mathbf{7} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, \mathbf{P} No:81)
Fe $415, \mathbf{6}_{\text {st }}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 7}=13.33($ IS 456:2000, P .No:80, C. No: B-1.3)
$b=\frac{d}{2}$
STEP 1: To find depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{13.33 \times 7}{(13.33 \times 7)+230}=0.289$
$n_{c}=0.289 \mathrm{~d}$
STEP 2: To find moment of resistance

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{C} \mathrm{z} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{b} \times \mathrm{n}_{\mathrm{c}}\left(\mathrm{~d}-\frac{n_{c}}{3}\right) \\
& \mathrm{Mr}=\frac{1}{2} \times 7 \times \frac{d}{2} \times 0.289 \mathrm{~d}\left(\mathrm{~d}-\frac{0.289 d}{3}\right) \\
& \mathrm{Mr}=0.4570 d^{3}
\end{aligned}
$$

STEP 3: To equate $\mathbf{B M}(\mathbf{M})$ and Ultimate moment (Mr)
$30 \times 10^{6}=\mathbf{0 . 4 5 7} \mathrm{d}^{3}$
$\mathbf{d}=399.64 \mathbf{~ m m} \cong 400 \mathrm{~mm}$
$b=\frac{d}{2}=\frac{400}{2}=200 \mathrm{~mm}$
STEP 4: To find area of steel (A_{st})
$A_{s t}=\frac{M}{6_{s t} j d}$
$j=1-\frac{k}{3}=1-\frac{0.289}{3}=0.9036$
$A_{s t}=\frac{30 \times 10^{6}}{230 \times 0.9036 \times 400}=360.87 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{1 2} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{360.87}{(\pi / 4) \times 12^{2}}=3.19 \cong 4$
3) A cantilever beam of 3.0 m span consist of udl of $25 \mathrm{KN} / \mathrm{m}$ inclusive of its seft weight. Find the steel area for balanced section if it is reinforced in tension only. The width of beam is half the effective depth. Use M_{15} and Fe 415. Use WSM

Solution:
Given Data:-
Cantilever Beam
$\mathbf{L}=\mathbf{3 . 0} \mathrm{m}$
$\mathbf{U d l}=\mathbf{2 5} \mathrm{KN} / \mathrm{m}$

Maximum bending moment $=\frac{W l^{2}}{2}=\frac{25 \times 3^{2}}{2}=112.5 \mathrm{KN} \mathrm{m}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $\boldsymbol{6}_{\text {st }}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 5}=18.666$ (IS 456:2000, P .No:80, C. No: B-1.3)
$b=\frac{d}{2}$
STEP 1: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.666 \times 5}{(18.666 \times 5)+230}=0.289$
$n_{c}=0.289 \mathrm{~d}$
STEP 2: To find moment of resistance

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{Cz} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{b} \times \mathrm{n}_{\mathrm{c}}\left(\mathrm{~d}-\frac{n_{c}}{3}\right) \\
& \mathrm{Mr}=\frac{1}{2} \times 5 \times \frac{d}{2} \times 0.289 \mathrm{~d}\left(\mathrm{~d}-\frac{0.289 d}{3}\right) \\
& \mathrm{Mr}=0.3264 d^{3}
\end{aligned}
$$

STEP 3: To equate BM (M) and Ultimate moment (Mr)
$112.5 \times 10^{6}=0.3264 \mathrm{~d}^{3}$
$\mathbf{d}=\mathbf{7 0 1 . 0 9} \mathbf{~ m m} \cong 710 \mathrm{~mm}$
$b=\frac{d}{2}=\frac{710}{2}=355 \mathrm{~mm}$
STEP 4: To find area of steel (A_{st})
$A_{s t}=\frac{M}{6_{s t} j d}$
$j=1-\frac{k}{3}=1-\frac{0.289}{3}=0.9036$
$A_{s t}=\frac{112.5 \times 10^{6}}{230 \times 0.9036 \times 710}=762.41 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{762.41}{(\pi / 4) \times 20^{2}}=2.426 \cong 3$
4) Determine moment of resistance and area of tensile steel required for a section of R.C. beam of 300 mm X 550 mm effective depth. Use M_{15} and Fe 415. Use WSM

Solution: $b=300 \mathrm{~mm}$
$\mathrm{d}=550 \mathrm{~mm}$
$M_{15}, 6_{\text {cbc }}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, \mathbf{P} No:81)
Fe $415, \mathbf{6}_{\mathrm{st}}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 5}=18.666$
STEP 1: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.666 \times 5}{(18.666 \times 5)+230}=0.289$
$n_{c}=0.289 \times 550=158.95 \mathrm{~mm}$
STEP 2: To find moment of resistance

$$
\begin{aligned}
& \mathrm{Mr}=\mathrm{C} \mathrm{z} \\
& \mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{bx} \mathrm{n} \\
& \mathrm{c}
\end{aligned}\left(\mathrm{~d}-\frac{n_{c}}{3}\right) .
$$

STEP 3: To find area of steel ($A_{s t}$)
$A_{s t}=\frac{M}{6_{s t} j d}$
$j=1-\frac{k}{3}=1-\frac{0.289}{3}=0.9036$
$A_{s t}=\frac{59.25 \times 10^{6}}{230 x 0.9036 \times 550}=518.35 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{1 6} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{518.35}{(\pi / 4) \times 16^{2}}=2.578 \cong 3$

DOUBLY REINFORCED BEAM

Introduction

The balanced section of a beam is the most economical section from the requirement of steel point of view. If the area of steel reinforcement is doubled, the moment of resistance of a balanced section is increased only by about 22%.

For a design moment M, if the size of the section is restricted due to head room constraint or architectural constraints and the moment of resistance of the singly reinforced section is less than M, there are two methods to design such sections.

1) Increase the concrete mix to increase the capacity of the section.
2) Reinforcement are provided in compression zone to give additional strength to the concrete compression. Such sections are called doubly reinforced sections.

The reinforcement in compression zone has following advantages:

1) It permits smaller size beams which look aesthetic.
2) It reduces the long term deflections and increase ductility of the beam.
3) It can be used as anchor bars for positioning the stirrups
4) They are provided, even when not required for strengths in the seismic zone to withstand repeated reversals produced.

According to IS 456:2000,the compressive stress in compression on steel should be calculated by multiplying the stress in surrounding concrete by 1.5 m . The stress in compression steel so found should not exceed the permissible values.

Location of Neutral Axis

Figure shows a doubly reinforced section. The neutral axis of a doubly reinforced section can be found by finding the centre of gravity of the combined section consisting of concrete in compression only and steel in compression and tension both.

Let, $b=$ breadth of beam
$d=$ effective depth of beam
$d^{\prime}=$ depth of centre of compression steel $=e d$
$\mathrm{e}=$ compressive steel depth factor $=\mathrm{dc} / \mathrm{d}$
$6_{\mathrm{cbc}}=$ maximum stress in concrete

6st= Maximum stress in tension steel
$6^{\prime} \mathrm{cc}=$ Stress in concrete surrounding compression steel

6sc= Stress in compression steel

Ast=Area of tensile stress

Asc $=$ Area of compression steel
n= depth of neutral axis

From stress diagram
$\frac{\frac{\sigma_{c c}}{\frac{\sigma_{s t}}{m}}}{}=\frac{n}{d-n}=\frac{k d}{d-k d}$
$k=\frac{m 6_{c c}}{m 6_{c c}+6_{s t}}$
Neglecting the concrete in tensile zone and equating the moment of compressive area about NA to the moment of tensile area about NA.

$$
\begin{aligned}
& \frac{b n^{2}}{2}+1.5 m A_{s c}\left(n-d^{\prime}\right)-A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n) \\
& \frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)
\end{aligned}
$$

IN DOUBLY REINFORCED BEAM THERE ARE THREE TYPES OF PROBLEMS

1) To find moment of resistance of section
2) To find the maximum tensile stress ($\boldsymbol{\sigma}_{\mathrm{st}}$) in steel and compression stress ($\mathbf{6}_{\mathrm{cbc}}$) in concrete
3) To find the area of tensile Steel ($A_{s t}$) and compressive steel ($A_{\text {sc }}$)

Type I : To find moment of resistance of section
Design Procedure
Given Data
STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$n=$?
STEP 2: To find depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}$
$n_{c}=$?
STEP 3: To compare \mathbf{n} and $\mathbf{n}_{\mathbf{c}}$
$\mathbf{n}<\mathrm{n}_{\mathrm{c}}$, then the section is under reinforced
$\mathbf{n}=\mathrm{n}_{\mathrm{c}}$, then the section is balanced Section
$\mathbf{n}>\mathrm{n}_{\mathrm{c}}$, then the section is over reinforced
$6_{c b c}^{\prime}=\frac{n-d^{\prime}}{n} 6_{c b c}$
$6^{\prime}{ }_{c b c}=$?
STEP 4: To find moment of resistance

$$
\begin{aligned}
& M=C Z \\
& M=C_{1} Z_{1}+C_{2} Z_{2} \\
& M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6_{c b c}^{\prime}\left(d-d^{\prime}\right)
\end{aligned}
$$

To find moment of resistance of section

1) A beam section, 280 mm wide and 540 mm overall depth reinforced with 5 bars of 20 mm diameter in the tension side and 4 bars of 20 mm diameter in compression side. The cover to the centre of both reinforcement is 30 mm . Determine the moment of resistance of the section, if M_{15} grade of concrete and bars of Fe 250 grade are used. Use WSM Solution:

Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{2 8 0} \mathbf{~ m m}$

Overall Depth $=\mathbf{D}=\mathbf{5 4 0} \mathbf{~ m m}$

Effective cover $=\mathbf{d}^{\prime}=\mathbf{3 0} \mathbf{~ m m}$

Effective Depth of rectangular section $=\mathbf{d}=$ D-d ${ }^{\prime}=\mathbf{5 4 0}-\mathbf{3 0}=\mathbf{5 1 0} \mathbf{~ m m}$

Number of bar on tension side =5

Area of steel on tension side $=\mathbf{A s t}=5 \mathbf{X} \quad \frac{\pi}{4} X \quad \phi^{2}=5 X \quad \frac{\pi}{4} \times 20^{2}=1570.79 \mathrm{~mm}^{2}$

Number of bar on compressive side $=4$

Area of steel on compressive side $=\mathbf{A s c}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \quad \frac{\pi}{4} \times 20^{2}=1256.63 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)

$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 5}=18.66$ (IS 456:2000, P .No:80, C. No: B-1.3)

STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{280 n^{2}}{2}+(1.5 \times 18.66-1) \times 1256.63(n-30)=18.66 \times 1570.79(510-n)$
$140 n^{2}+33916.44 n-1.0174 \times 10^{6}=14.948 \times 10^{6}-29310.94 n$
$140 n^{2}+63227.38 n-15.9654 x 10^{6}=0$
$n=180.426 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (\mathbf{n}_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.66 \times 5}{(18.66 \times 5)+140}=0.3999$
$n_{c}=0.3999 \times 510=203.94 \mathrm{~mm}$
STEP 3: To compare n and n_{c}
n<n ${ }_{\text {c }}$
$180.426<203.949$
then the section is under reinforced
$6^{\prime}{ }_{c b c}=\frac{n-d^{\prime}}{n} 6_{c b c}$
$6_{c b c}^{\prime}=\frac{180.426-30}{180.426} \times 5$
$6^{\prime}{ }_{c b c}=4.168 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 4: To find moment of resistance
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$M=\frac{1}{2} \times 5 \times 280 \times 180.426\left(510-\frac{180.426}{3}\right)+(1.5 \times 18.66-1) \times 1256.63 \times 4.168 \times(510-30)$
$M=124.67 \times 10^{6} \mathrm{Nmm}$
$M=124.67 \mathrm{KNm}$
2) A beam section, 300 mm wide and 600 mm overall depth reinforced with 4 bars of 25 mm diameter in the tension side and 4 bars of 12 mm diameter in compression side. The cover to the centre of both reinforcement is 30 mm . Determine the moment of resistance of the section, if M_{20} grade of concrete and HYSD bars of Fe 415 grade are used. Use WSM
Solution:

Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{3 0 0} \mathbf{~ m m}$
Overall Depth $=\mathbf{D}=\mathbf{6 0 0} \mathbf{~ m m}$
Effective cover $=$ d' $^{\mathbf{\prime}} \mathbf{= 3 0} \mathbf{~ m m}$

Effective Depth of rectangular section $=\mathbf{d}=\mathbf{D}-d^{\prime}=\mathbf{6 0 0}-\mathbf{3 0}=\mathbf{5 7 0} \mathrm{mm}$
Number of bar on tension side $=4$

Area of steel on tension side $=\mathbf{A s t}=4 \mathrm{X} \quad \frac{\pi}{4} X \quad \phi^{2}=4 \mathrm{X} \quad \frac{\pi}{4} \times 25^{2}=1963.5 \mathrm{~mm}^{2}$

Number of bar on compressive side $=4$

Area of steel on compressive side $=\mathbf{A s c}=4 \mathbf{X} \quad \frac{\pi}{4} \times \quad \phi^{2}=4 \times \quad \frac{\pi}{4} \times \quad 12^{2}=452.4 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}, \mathbf{6}_{\text {cbc }}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, \mathbf{P} No:81)
Fe 415, $\boldsymbol{6}_{\text {st }}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 7}=13.33($ IS 456:2000, P .No:80, C. No: B-1.3)

STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{300 n^{2}}{2}+(1.5 \times 13.33-1) \times 452.4(n-30)=13.33 \times 1963.5(570-n)$
$150 n^{2}+34766.8 n-15176669=0$
$n=222.65 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (\mathbf{n}_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{13.33 \times 7}{(13.33 \times 7)+230}=0.288$
$n_{c}=0.288 \times 570=164.60 \mathrm{~mm}$
STEP 3: To compare n and n_{c}
n $>\mathrm{n}_{\mathrm{c}}$
$222.65>164.60$
then the section is over reinforced
$\mathbf{n}>\mathrm{n}_{\mathrm{c}}$, the stress in concrete will reach its maximum permissible value first. Hence, stress in concrete surrounding the compression steel

$$
\begin{aligned}
6_{c b c}^{\prime} & =\frac{n-d^{\prime}}{n} 6_{c b c} \\
6_{c b c}^{\prime} & =\frac{222.65-30}{222.65} \times 7 \\
6_{c b c}^{\prime} & =6.057 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

STEP 4: To find moment of resistance

$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$M=\frac{1}{2} \times 7 \times 300 \times 222.65\left(570-\frac{222.65}{3}\right)+(1.5 \times 13.33-1) \times 452.4 \times 6.057 \times(570-30)$
$M=144.01 \times 10^{6} \mathrm{Nmm}$
$M=144.01 \mathrm{KNm}$
3) A beam section, 250 mm wide and 415 mm effective depth reinforced with 4 bars of 20 mm diameter in the tension side and 2 bars of 16 mm diameter in compression side. The cover to the centre of both reinforcement is 35 mm . Determine the moment of resistance of the section, if M_{20} grade of concrete and HYSD bars of Fe 415 grade are used. Use WSM
Solution:

Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$

Effective Depth of rectangular section = d=415 $\mathbf{~ m m}$
Overall Depth $=\mathrm{D}=\mathrm{d}+\mathrm{d}^{\prime}=\mathbf{4 1 5}+\mathbf{3 5}=\mathbf{4 4 0} \mathbf{~ m m}$
Effective cover $=$ d' $^{\mathbf{\prime}} \mathbf{= 3 5} \mathbf{~ m m}$

Number of bar on tension side $=4$

Area of steel on tension side $=\mathbf{A s t}=4 X \quad \frac{\pi}{4} X \quad \phi^{2}=4 X \quad \frac{\pi}{4} X \quad 20^{2}=1256.6 \mathrm{~mm}^{2}$

Number of bar on compressive side $=2$

Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \times \quad \frac{\pi}{4} X \quad \phi^{2}=2 X \quad \frac{\pi}{4} X \quad 16^{2}=402.1 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}, \mathbf{6}_{\mathrm{cbc}}=\mathbf{7} \mathrm{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, \mathbf{P} No:81)
Fe $415, \mathbf{6}_{\mathrm{st}}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 7}=13.33$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{250 n^{2}}{2}+(1.5 \times 13.33-1) \times 402.1(n-35)=13.33 \times 1256.6(415-n)$
$125 n^{2}+7637.88 n-267.326 \times 10^{3}=6.9514 \times 10^{6}-16750.47 n$
$125 n^{2}+24388.35-7.218 \times 10^{6}=0$
$n=161.793 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (\mathbf{n}_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{13.33 \times 7}{(13.33 \times 7)+230}=0.288$
$n_{c}=0.288 \times 415=119.52 \mathrm{~mm}$
STEP 3: To compare \mathbf{n} and $\mathbf{n}_{\mathbf{c}}$
n > n_{c}
$161.793>119.52$
then the section is over reinforced
$\mathbf{n}>\mathrm{n}_{\mathrm{c}}$, the stress in concrete will reach its maximum permissible value first. Hence, stress in concrete surrounding the compression steel
$6^{\prime}{ }_{c b c}=\frac{n-d^{\prime}}{n} 6_{c b c}$
$6^{\prime}{ }_{c b c}=\frac{161.793-35}{161.793} \times 7$
$6^{\prime}{ }_{c b c}=5.485 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 4: To find moment of resistance
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$M=\frac{1}{2} \times 7 \times 250 \times 161.793\left(415-\frac{161.793}{3}\right)+(1.5 \times 13.33-1) \times 402.1 \times 5.485 \times(415-35)$
$M=67.035 \times 10^{6} \mathrm{Nmm}$
$M=67.035 \mathrm{KNm}$

Type II :- To find the maximum tensile stress ($\mathbf{6}_{\mathrm{st}}$) in steel and compression stress ($\mathbf{6}_{\mathrm{cbc}}$) in concrete
Given Data
STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$n=$?
STEP 2: To find maximum stress in concrete ($\mathbf{6}_{\mathrm{cbc}}$)
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6_{c b c}^{\prime}\left(d-d^{\prime}\right)$
$6^{\prime}{ }_{c b c}=6_{c b c}\left(\frac{n-d^{\prime}}{n}\right)$ \qquad
Subt equation (2) in eqution (1)
$6_{c b c}=$?
STEP 3: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$6_{\mathrm{st}}=1.5 \mathrm{~m} \mathrm{6}_{\mathrm{cbc}}{ }^{\mathrm{c}}$

1) Find maximum compressive stress in concrete and tensile stress in steel in a doubly reinforced section for the following data $\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \mathrm{~d}^{\prime}=45 \mathrm{~mm}, \mathrm{M}=110 \mathrm{KNm}$

Ast= 5 bars of 25 mm diameter
Asc= 2 bars of 25 mm diameter
$\mathrm{m}=13$ Use WSM

Solution:
Given Data

$$
\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \mathrm{~d}^{\prime}=45 \mathrm{~mm}, \mathrm{M}=110 \mathrm{KNm}
$$

Number of bar on tension side $=5$

Area of steel on tension side $=\mathbf{A s t}=5$ X $\quad \frac{\pi}{4} X \quad \phi^{2}=5 \mathrm{X} \quad \frac{\pi}{4} X \quad 25^{2}=2454.37 \mathrm{~mm}^{2}$

Number of bar on compressive side $=2$

Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \mathbf{X} \quad \frac{\pi}{4} X \quad \phi^{2}=2 \times \quad \frac{\pi}{4} X 25^{2}=981.75 \mathrm{~mm}^{2}$
$\mathrm{m}=13$

STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{300 n^{2}}{2}+(1.5 \times 13-1) \times 981.75(n-45)=13 \times 2454.37(450-n)$
$150 n^{2}+18162.375 n-817.30 \times 10^{3}=14.358 \times 10^{6}-31906.81 n$
$150 n^{2}+50069.18 n-15.1753 \times 10^{6}=0$
$n=192.3 \mathrm{~mm}$
STEP 2: To find maximum stress in concrete ($\mathbf{6}_{\text {cbc }}$)
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$6^{\prime}{ }_{c b c}=6_{c b c}\left(\frac{n-d^{\prime}}{n}\right)$
$6_{c b c}^{\prime}=6_{c b c}\left(\frac{192.3-45}{192.3}\right)$
$6^{\prime}{ }_{c b c}=0.7666_{c b c}$
Subt equation (2) in eqution (1)
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$110 \times 10^{6}=\frac{1}{2} x 6_{c b c} x 300 \times 192.3\left(450-\frac{192.3}{3}\right)+(1.5 \times 13-1) 984.75 \times 0.766 \times 6_{c b c}(450-45)$
$6_{c b c}=6.56 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 3: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$6_{\mathrm{st}}=1.5 \mathrm{~m}^{\prime}{ }_{\mathrm{cbc}}$
$6_{c b c}^{\prime}=0.766 x 6_{c b c}$
$6_{\text {cbc }}^{\prime}=0.766 \times 6.56=5.024 \mathrm{~N} / \mathrm{mm}^{2}$
$6_{\mathrm{st}}=1.5 \times 13 \times 5.024$
$6_{\text {st }}=97.986 \mathrm{~N} / \mathrm{mm}^{2}$
2) Find maximum compressive stress in concrete and tensile stress in steel in a doubly reinforced section for the following data
$\mathrm{b}=200 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \mathrm{~d}^{\prime}=30 \mathrm{~mm}, \mathrm{M}=100 \mathrm{KNm}$
Ast $=4$ bars of 25 mm diameter
Asc= 3 bars of 22 mm diameter
$\mathrm{m}=18.66$ Use WSM
Solution:
Given Data

$$
\mathrm{b}=200 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \mathrm{~d}^{\prime}=30 \mathrm{~mm}, \mathrm{M}=100 \mathrm{KNm}
$$

Number of bar on tension side $=4$

Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 X \quad \frac{\pi}{4} \times 25^{2}=1963.49 \mathrm{~mm}^{2}$

Number of bar on compressive side $=3$

Area of steel on compressive side $=\mathbf{A s c}=\mathbf{3} \mathbf{X} \quad \frac{\pi}{4} X \quad \phi^{2}=3 X \quad \frac{\pi}{4} X 22^{2}=1140.39 \mathrm{~mm}^{2}$
$\mathrm{m}=18.66$

STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{200 n^{2}}{2}+(1.5 \times 18.66-1) \times 1140.39(n-30)=18.66 \times 1963.49(450-n)$
$100 n^{2}+30779.12 n-923.37 \times 10^{3}=16.487 \times 10^{6}-36638.72 n$
$100 n^{2}+67417.84 n-17.41 \times 10^{6}=0$
$n=199.31 \mathrm{~mm}$
STEP 2: To find maximum stress in concrete ($\mathbf{~}_{\mathrm{cbc}}$)
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$6_{c b c}^{\prime}=6_{c b c}\left(\frac{n-d^{\prime}}{n}\right)$
$6_{c b c}^{\prime}=6_{c b c}\left(\frac{199.31-30}{199.31}\right)$
$6_{c b c}^{\prime}=0.84946_{c b c}$
Subt equation (2) in eqution (1)
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6^{\prime}{ }_{c b c}\left(d-d^{\prime}\right)$
$100 \times 10^{6}=\frac{1}{2} x 6_{c b c} \times 200 \times 199.31\left(450-\frac{199.31}{3}\right)+(1.5 \times 18.66-1) \times 1140.39 \times 0.8494 \times 6_{c b c}(450-30)$
$6_{c b c}=5.369 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 3: To find maximum stress in steel ($\mathbf{6}_{\mathrm{st}}$)
$6_{\mathrm{st}}=1.5 \mathrm{~m}_{\mathrm{cbc}}{ }^{\mathrm{cbc}}$
$6_{c b c}^{\prime}=0.8494 x 6_{c b c}$
$6_{c b c}^{\prime}=0.8494 \times 5.369=4.560 \mathrm{~N} / \mathrm{mm}^{2}$
$6_{\text {st }}=1.5 \times 18.66 \times 4.560$
$6_{\mathrm{st}}=127.63 \mathrm{~N} / \mathrm{mm}^{2}$
3) Find maximum compressive stress in concrete and tensile stress in steel in a doubly reinforced section for the following data
$\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}, \mathrm{~d}^{\prime}=25 \mathrm{~mm}, \mathrm{M}=120 \mathrm{KNm}$
Ast= 4 bars of 20 mm diameter
Asc= 4 bars of 20 mm diameter
m=13.33 Use WSM

Solution:
Given Data

$$
\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}, \mathrm{~d}^{\prime}=25 \mathrm{~mm}, \mathrm{M}=120 \mathrm{KNm}
$$

Number of bar on tension side $=4$

Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 X \quad \frac{\pi}{4} X \quad 20^{2}=1256.63 \mathrm{~mm}^{2}$

Number of bar on compressive side $=4$

Area of steel on compressive side $=\mathbf{A s c}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 X \quad \frac{\pi}{4} X \quad 20^{2}=1256.63 \mathrm{~mm}^{2}$
$\mathrm{m}=13.33$

STEP 1: To find depth of neutral axis (n)
$C=T$
$C_{1}+C_{2}=T$
$\frac{b n^{2}}{2}+(1.5 m-1) A_{s c}\left(n-d^{\prime}\right)=m A_{s t}(d-n)$
$\frac{300 n^{2}}{2}+(1.5 \times 13.33-1) \times 1256.63(n-25)=13.33 \times 1256.63 \times(500-n)$
$150 n^{2}+23869.68 n-596.742 \times 10^{3}=8.375 \times 10^{6}-16750.87 n$
$150 n^{2}+40620.55 n-8.9721 \times 10^{6}=0$
$n=144.12 \mathrm{~mm}$
STEP 2: To find maximum stress in concrete ($\mathbf{~}_{\text {cbc }}$)
$M=C Z$
$M=C_{1} Z_{1}+C_{2} Z_{2}$
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6_{c b c}^{\prime}\left(d-d^{\prime}\right)$
$6_{c b c}^{\prime}=6_{c b c}\left(\frac{n-d^{\prime}}{n}\right)$
$6^{\prime}{ }_{c b c}=6_{c b c}\left(\frac{144.12-25}{144.12}\right)$
$6^{\prime}{ }_{c b c}=0.82656_{c b c}$
Subt equation (2) in eqution (1)
$M=\frac{1}{2} 6_{c b c} b n\left(d-\frac{n}{3}\right)+(1.5 m-1) A_{s c} 6_{c b c}^{\prime}\left(d-d^{\prime}\right)$
$120 \times 10^{6}=\frac{1}{2} x 6_{c b c} x 300 \times 144.12\left(500-\frac{144.12}{3}\right)+(1.5 \times 13.33-1) x 1256.63 \times 0.8265 \times 6_{c b c}(500-25)$
$6_{c b c}=6.269 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 3: To find maximum stress in steel ($\mathbf{6}_{\text {st }}$)
$6_{\mathrm{st}}=1.5 \mathrm{~m} 6_{\mathrm{cbc}}^{\prime}$
$6_{c b c}^{\prime}=0.8265 x 6_{c b c}$
$6_{\text {cbc }}^{\prime}=0.8265 \times 6.269=5.181 \mathrm{~N} / \mathrm{mm}^{2}$
$6_{\text {st }}=1.5 \times 13.33 \times 5.181$
$6_{\text {st }}=103.594 \mathrm{~N} / \mathrm{mm}^{2}$

Type III :- To find the area of tensile Steel (A_{st}) and compressive steel (Asc)

Given Data;

STEP 1: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}$

STEP 2: To find moment of resistance

$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{bxxn} \mathrm{c}\left(\mathrm{d}-\frac{n_{c}}{3}\right)$
$\mathrm{Mr}=$?
$\mathrm{M}>\mathrm{Mr}$
The section is doubly reinforced section
STEP 3: Additional moment
$\mathrm{M}_{1}=\mathrm{M}-\mathrm{Mr}$
STEP 4: To find area of steel in tension (A_{st})
To find area of steel (A_{st})
$A_{s t_{1}}=\frac{M_{r}}{6_{s t} j d}$
$j=1-\frac{k}{3}$
$A_{s t_{1}}=$?
To find area of steel $\left(\mathrm{A}_{\mathrm{st2}}\right)$
$A_{s t_{2}}=\frac{M_{1}}{6_{s t}\left(d-d^{\prime}\right)}$
$A_{s t_{2}}=$?
Total area of steel in tension
$\mathrm{Ast}=\mathrm{A}_{\mathrm{st} 1}+\mathrm{A}_{\mathrm{st} 2}$
Assume diameter of bar $=\boldsymbol{\Phi}$

Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
STEP 5: To find area of steel in compression ($\mathrm{A}_{\text {sc }}$)
$\mathrm{m} \mathrm{A}_{\mathrm{st}_{2}}\left(d-n_{c}\right)=(1.5 m-1) A_{s c}\left(n_{c}-d^{\prime}\right)$
$A_{s c}=$?
Assume diameter of bar $=\boldsymbol{\Phi}$
Number of bars $=\frac{A_{s c}}{(\pi / 4) \times \phi^{2}}$

1) Determine reinforcement to be provided for a R.C beam of $\mathbf{6 m}$ effective span and cross sectional area is $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ overall depth with effective cover of 40 mm . The bending moment is $\mathbf{1 3 2 . 7 5} \mathrm{KNm}$. Use M_{15} and Fe 415.Use WSM

Solution:
$B M=M=132.75 \mathbf{K N m}=132.75 \times 10^{6} \mathbf{N m m}$
Width of beam $=b=\mathbf{3 0 0} \mathrm{mm}$
Over all depth of beam $=\mathrm{D}=\mathbf{6 0 0} \mathrm{mm}$
Effective cover $=\mathbf{d}^{\prime}=\mathbf{4 0} \mathbf{~ m m}$
Effective depth $=\mathbf{d}=$ D $-d^{\prime}=\mathbf{6 0 0}-\mathbf{4 0}=\mathbf{5 6 0} \mathbf{~ m m}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $\boldsymbol{6}_{\text {st }}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 5}=18.66$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.66 x 5}{(18.66 \times 5)+230}=0.2885$
$n_{c}=0.2885 \mathrm{x} \mathrm{d}$
$n_{c}=0.2885 \times 560=161.56 \mathrm{~mm}$

STEP 2: To find moment of resistance
$\mathrm{Mr}=\mathrm{Cz}_{\mathrm{z}}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \times \mathrm{bx} \mathrm{n} \mathrm{c}_{\mathrm{c}}\left(\mathrm{d}-\frac{n_{c}}{3}\right)$
$\mathrm{Mr}=\frac{1}{2} \times 5 \times 300 \times 161.56\left(560-\frac{161.56}{3}\right)$
$\mathrm{Mr}=61.329 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mr}=61.329 \mathrm{kNm}-$
$\mathrm{M}>\mathrm{Mr}$
$132.75>91.329$
The section is doubly reinforced section

STEP 3: Additional moment
$\mathrm{M}_{1}=\mathrm{M}-\mathrm{Mr}$
$\mathrm{M}_{1}=132.75-61.329=71.424 \mathrm{KNm}$
STEP 4: To find area of steel in tension ($A_{s t}$)
To find area of steel $\left(\mathrm{A}_{\mathrm{st1}}\right)$
$A_{s t_{1}}=\frac{M_{r}}{6_{s t} j d}$
$j=1-\frac{k}{3}=1-\frac{0.2885}{3}=0.9038$
$A_{s t_{1}}=\frac{61.329 \times 10^{6}}{230 \times 0.9038 \times 560}=526.83 \mathrm{~mm}^{2}$
To find area of steel $\left(\mathrm{A}_{\mathrm{st} 2}\right)$
$A_{s t_{2}}=\frac{M_{1}}{6_{s t}\left(d-d^{\prime}\right)}$
$A_{s t_{2}}=\frac{71.424 \times 10^{6}}{230 \times(560-40)}$
$A_{s t_{2}}=597.19 \mathrm{~mm}^{2}$

Total area of steel in tension
$\mathrm{Ast}=\mathrm{A}_{\mathrm{st} 1}+\mathrm{A}_{\mathrm{st} 2}$

Ast $=526.83+597.19=1121.020 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1124.02}{(\pi / 4) \times 20^{2}}=3.577 \cong 4$
STEP 5: To find area of steel in compression ($\mathrm{A}_{\text {sc }}$)
$\mathrm{m} \mathrm{A}_{\mathrm{st}_{2}}\left(d-n_{c}\right)=(1.5 m-1) A_{s c}\left(n_{c}-d^{\prime}\right)$
$18.66 \times 597.19 x(560-161.56)=(1.5 \times 18.66-1) A_{s c}(161.56-40)$
$A_{s c}=1353.29 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1353.29}{(\pi / 4) \times 20^{2}}=4.30 \cong 5$
2) Determine reinforcement to be provided for a R.C beam having cross section is $250 \mathrm{~mm} X$ 530 mm overall depth with effective cover of $\mathbf{3 0} \mathbf{~ m m}$. The bending moment is 100 KNm . Use M_{15} and Fe 415. Use WSM

Solution:

$B M=M=100 \mathrm{KNm}=100 \times 10^{6} \mathrm{Nmm}$
Width of beam $=b=250 \mathrm{~mm}$
Over all depth of beam $=\mathrm{D}=530 \mathrm{~mm}$
Effective cover $=\mathbf{d}^{\prime}=\mathbf{3 0} \mathbf{~ m m}$
Effective depth $=$ d= $D-d^{\prime}=\mathbf{5 3 0 - 3 0}=\mathbf{5 0 0} \mathbf{~ m m}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=\mathbf{5} \quad \mathrm{N} / \mathrm{mm}^{2}(\mathrm{IS} 456: 2000$, Table No: 21, P No:81)
Fe 415, $\mathbf{6}_{\mathrm{st}}=\mathbf{2 3 0} \mathbf{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, \mathbf{P} No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 5}=18.66($ IS 456:2000, P .No:80, C. No: B-1.3)

STEP 1: To find depth of critical neutral axis ($\mathbf{n}_{\mathbf{c}}$)
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.66 \times 5}{(18.66 \times 5)+230}=0.2885$
$n_{c}=0.2885 \mathrm{x} \mathrm{d}$
$n_{c}=0.2885 \mathrm{x} 500=144.25 \mathrm{~mm}$

STEP 2: To find moment of resistance

$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{xbxn} \mathrm{n}_{\mathrm{c}}\left(\mathrm{d}-\frac{n_{c}}{3}\right)$
$\mathrm{Mr}=\frac{1}{2} \times 5 \times 250 \times 144.25\left(500-\frac{144.25}{3}\right)$
$\mathrm{Mr}=40.743 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mr}=40.743 \mathrm{kNm}$
M>Mr
$100>40.743$
The section is doubly reinforced section
STEP 3: Additional moment
$\mathrm{M}_{1}=\mathrm{M}-\mathrm{Mr}$
$\mathrm{M}_{1}=100-40.743=59.257 \mathrm{KNm}$
STEP 4: To find area of steel in tension (A_{st})
To find area of steel $\left(\mathrm{A}_{\mathrm{st}}\right)$
$A_{s t_{1}}=\frac{M_{r}}{6_{s t} j d}$
$j=1-\frac{k}{3}=1-\frac{0.2885}{3}=0.9038$
$A_{s t_{1}}=\frac{40.743 \times 10^{6}}{230 x 0.9038 \times 500}=391.99 \mathrm{~mm}^{2}$

To find area of steel ($\mathrm{A}_{\mathrm{st} 2}$)
$A_{s t_{2}}=\frac{M_{1}}{6_{s t}\left(d-d^{\prime}\right)}$
$A_{s t_{2}}=\frac{59.257 \times 10^{6}}{230 x(500-30)}$
$A_{s_{2}}=548.16 \mathrm{~mm}^{2}$
Total area of steel in tension
$\mathrm{Ast}=\mathrm{A}_{\mathrm{st} 1}+\mathrm{A}_{\mathrm{st} 2}$
Ast $=391.99+548.16=940.158 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{940.158}{(\pi / 4) \times 20^{2}}=2.992 \cong 3$
STEP 5: To find area of steel in compression (A_{sc})
$\mathrm{m} \mathrm{A}_{\mathrm{st}_{2}}\left(d-n_{c}\right)=(1.5 m-1) A_{s c}\left(n_{c}-d^{\prime}\right)$
$18.66 \times 548.16 \times(500-144.25)=(1.5 \times 18.66-1) A_{s c}(144.25-30)$
$A_{s c}=1180.06 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=16 \mathbf{~ m m}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1180.06}{(\pi / 4) \times 16^{2}}=5.869 \cong 6$
3) Determine reinforcement to be provided for a R.C beam having cross section is $250 \mathrm{~mm} X$ 600 mm overall depth with effective cover of 50 mm . The bending moment is 95 KNm . Use M_{15} and Fe 250. Use WSM

Solution:

$B M=M=95 \mathrm{KNm}=95 \times 10^{6} \mathrm{Nmm}$
Width of beam $=b=\mathbf{2 5 0} \mathrm{mm}$
Over all depth of beam $=D=600 \mathrm{~mm}$
Effective cover $=\mathbf{d}{ }^{\prime}=\mathbf{5 0} \mathbf{~ m m}$
Effective depth $=$ d= D- d' $=\mathbf{6 0 0}-\mathbf{5 0}=\mathbf{5 5 0} \mathbf{~ m m}$
$\mathrm{M}_{15}, \mathbf{6}_{\mathrm{cbc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 250, $\boldsymbol{6}_{\mathrm{st}}=140 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 5}=18.66$ (IS 456:2000, P .No:80, C. No: B-1.3)
STEP 1: To find depth of critical neutral axis (n_{c})
$n_{c}=k d$
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{18.66 \times 5}{(18.66 \times 5)+140}=0.3999$
$n_{c}=0.3999 \mathrm{x} \mathrm{d}$
$n_{c}=0.3999 \mathrm{x} 550=219.945 \mathrm{~mm}$
STEP 2: To find moment of resistance
$\mathrm{Mr}=\mathrm{Cz}$
$\mathrm{Mr}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{Xbxxn}_{\mathrm{c}}\left(\mathrm{d}-\frac{n_{c}}{3}\right)$
$\mathrm{Mr}=\frac{1}{2} \times 5 \times 250 \times 219.945\left(550-\frac{219.945}{3}\right)$
$\mathrm{Mr}=65.52 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mr}=65.52 \mathrm{kNm}$
M>Mr
$95>65.52$
The section is doubly reinforced section
STEP 3: Additional moment
$\mathrm{M}_{1}=\mathrm{M}-\mathrm{Mr}$
$\mathrm{M}_{1}=95-65.52=29.48 \mathrm{KNm}$
STEP 4: To find area of steel in tension (A_{st})
To find area of steel $\left(\mathrm{A}_{\mathrm{st1}}\right)$

$$
\begin{aligned}
& A_{s t_{1}}=\frac{M_{r}}{6_{s t} j d} \\
& j=1-\frac{k}{3}=1-\frac{0.3999}{3}=0.8667 \\
& A_{s t_{1}}=\frac{65.52 \times 10^{6}}{140 \times 0.8667 \times 550}=981.78 \mathrm{~mm}^{2}
\end{aligned}
$$

To find area of steel $\left(\mathrm{A}_{\mathrm{st2}}\right)$
$A_{s t_{2}}=\frac{M_{1}}{6_{s t}\left(d-d^{\prime}\right)}$
$A_{s t_{2}}=\frac{29.48 \times 10^{6}}{140 x(550-50)}$
$A_{s t_{2}}=421.14 \mathrm{~mm}^{2}$
Total area of steel in tension
$\mathrm{Ast}=\mathrm{A}_{\mathrm{st} 1}+\mathrm{A}_{\mathrm{st} 2}$
Ast $=981.78+421.014=1402.92 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1402.92}{(\pi / 4) \times 20^{2}}=4.46 \cong 5$
STEP 5: To find area of steel in compression ($\mathbf{A}_{\text {sc }}$)
$\mathrm{m} \mathrm{A}_{\mathrm{st}_{2}}\left(d-n_{c}\right)=(1.5 m-1) A_{s c}\left(n_{c}-d^{\prime}\right)$
$18.66 \times 421.014 \times(550-219.945)=(1.5 \times 18.66-1) A_{s c}(219.945-50)$
$A_{s c}=565.30 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=16 \mathbf{~ m m}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1180.06}{(\pi / 4) \times 16^{2}}=5.869 \cong 6$

Column

Introduction:

In reinforrced concrete construction, a compression member having its effective length greater than 3 times its least lateral dimension is called as column or Strut. A vertical compression member coming under above defination is usually called a column, while that in any other directions, as in case of frames and trusses, is called strut. A column with an effective length less than three times the least lateral dimension is called a pedestal. Column is an important element of every reinforced concrete structures. These are used to transfer the load of super structure to the foundation safely. Mainly column, struts and pedestals are used as compression members in buildings, bridges, supporting system of tanks, factories and many more such structures.

Types of Column:

Column are classified based on different criteria such as

1) Shapes of cross section
2) Material of constuction
3) Types of loading
4) Slenderness ratio
5) Types of lateral reinforcement
6) Shapes of cross section:

On the basis of shape of cross section of the column, the column may be classified as following
a) Square
b) Rectangular
c) Circular
d) Pentagonal
e) Hexagonal
f) Octogonal
g) T - shape or L- Shape etc

Square

L-Shape

Rectangular

T- Shape

Circular

Hexagonal

Pentagonal

2) Material of constuction

Column may be classified as following, as per material used for constuction
a) Timber Columns: Timber column are generally used for light loads. They are used in small trusses and wooden houses. They are called posts
b) Masonary Columns: These are used for light loads.
c) R.C.C. Columns: R.C.C. Column are used for mostly all types of buildings and other R.C.C structures link thanks, bridges etc
d) Steel columns: Steel columns are used for heavy loads.
e) Composite columns: Composite columns are used for heavy loads. They consist of steel sections like joists embedded in R.C.C. Section.
3) Types of loading Column may be classified as following, based on type of loading
a) Axially loaded column
b) Eccentrically loaded columns
a) Axially loaded column: The column which are subjected to loads actiong along the longitudinal axis or centroid of the column section is called axially loaded columns. Axially loaded column is subjected to direct compressive stress only and no bending stress develops anywhere in the column section.
b) Eccentrically loaded columns: Eccentrically loaded columns are those columns in which the loads do not act on the longitudinal axis of the column. They are
subjected to direct compressive stress and bending stress both. Eccentrically loaded columns may be subjected to uniaxial bending or biaxial bending depending upon the line of action of load, with respect to the two axis of the column section.

4) Slenderness ratio

The slenderness ratio of a compression member is defined as the ratio of effective length to the least lateral dimension. The column are classified as following two types depending upon the slenderness ratio.
a) Short column
b) Long column
a) Short Column: The column is considered as short when the slenderness ratio of column i.e ratio of effective length to its lateral dimension $\left(\frac{L_{e f f}}{\text { Least lateral dimension }} \leq 12\right)$ is less than or equal to 12 .
b) Long column: The column is considered as long when the slenderness ratio of column i.e ratio of effective length to its lateral dimension $\left(\frac{L_{\text {eff }}}{\text { Least lateral dimension }}>12\right)$ is greater than or equal to 12 .
5) Types of lateral reinforcement

An R.C.C column has longitudinal and lateral reinforcement. They can also be classified according to the the manner in which the longitidinal steel is laterally supported or tied.
a) Column with longitudinal steel and lateral ties : In this type of arrangement the longitudinal bars are tied laterally at suitable internals with the help of ties.
b) Column with longitudinal steel and spiral ties: The longitudinal bars are tied continuously with the help of a spiral reinforcement. The columns with helical or spiral reinforcement are better in providing lateral support to bars as compared to links thus they increse the vuckling resistance and ductility of the column.

Longitudinal rods and spiral hooping

Circular With Spiral

Longitudinal rods and lateral ties

Square

Circular

Effective length of column: The effective length of column is defined as that length of the column which takes lart in buckling under the action of loads. This is also defined as the length between the point of contraflexure of the buckled column.

The deflected shape depends upon the types of end supports or degree of end restraints. The design of column is done on the basis of effective length.
(IS 456:2000, Table No: 28, P. No: 94)

Table 28 Effective Length of Compression Members
(Clause E-3)

Degree of End Restraint of Compre-

 ssion Members
(1)

Effectively held in position and restrained against rotation in both ends

Effectively held in position at both ends, restrained against rotation at one end

Effectively heid in position at both ends, but not restrained against rotation

Effectively held in position and restrained against rotation at one end, and at the other restrained against rotation but not held in position
(2)

$0.70 l$
$1.00 t$

$1.00 l$

Recommended
 Value of Effective Length

(4)
0.651
$0.80 l$
1.00 l
1.20 l

NOTE $-l$ is the unsupported length of compression member.
Unsupported length of column: The unsupported length of column is clear length or height between the floor and the lower level of the ceiling.

Reinforcemet in column: Concrete is strong in compression. Thus a column can be made up of plain concrete but it is always advisable to use R.C.C. columns instead of plain concrete columns.

There are two types of reinforcement provided in a R.C.C. Column
a) Longitudinal reinforcement
b) Transverse reinforcement
a) Longitudinal reinforcement : The longitudinal reinforcement consist of steel bars are placed longitudinally in a column. It is also called as main steel. The functions of longitudinal reinforcement are as follows

1) To share the compressive loads along with concrete, thus reducing the overall size of the column and leaving more unstable area.
2) To resist tensile stresses developed due to any moment or accidental eccentricity.
3) To impart ductility to the column
4) To reduce the effect of creep and shrinkage due to continuous constant loading applied for a long time.
b) Transverse reinforcement

The transverse reinforcement is provided along the lateral direction of the column in
the form of ties or spirals enclosing the main steel. The function of transverse steel are as following

1) To hold the longitudinal bars in position
2) To prevent buckling of the main longitudinal bars.
3) To resist diagonal tension caused due to transverse shear development because of any moments or load.
4) To impart ductility to the column
5) To prevent longitudinal splitting or bulging out of concrete by confining it in the core

Type I: Analysis of axially loaded column

Design Procedure

Given Data

STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
Ac $=\mathrm{Ag}-\mathrm{Asc}$
STEP 2: To find load carrying capacity of column (P)
For Short Column $\left(\frac{L_{\text {eff }}}{\text { Least lateral dimension }}<12\right)$
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}-------------($ (IS 456-2000, P. No: 81, C. No: B-3)
For Long Column $\left(\frac{L_{\text {eff }}}{\text { Least lateral dimension }}>12\right)$
$\mathrm{C}_{\mathrm{r}}=\left(1.25-\frac{L_{e f f}}{48 b}\right)------($ IS $456: 2000$, P No $: 81$, C. No $: B-3.3)$
$\mathrm{P}=\mathrm{C}_{\mathrm{r}} x\left[6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{XA}_{\mathrm{sc}}\right]$

1) A short column $400 \mathrm{~mm} \times 600 \mathrm{~mm}$ in section is reinforced with 10 bars of 25 mm diameter. Find load carrying capacity of column. Use $\mathrm{M}_{25} \& \mathrm{Fe} 415$. Use WSM Solution:
Given Data
Width of column $=b=400 \mathrm{~mm}$
Depth of column $=\mathrm{D}=600 \mathrm{~mm}$
$\phi=25 \mathrm{~mm}$
No of bar $=10$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=10 \times \frac{\pi}{4} \times \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=10 x \frac{\pi}{4} \times 25^{2}=4908.73 \mathrm{~mm}^{2}$
$\mathrm{M}_{25}, 6_{\text {cc }}=6 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $6_{\text {sc }}=190 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)

STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
Ac $=\mathrm{Ag}-\mathrm{Asc}=(400 \times 600)-4908.73=235.09 \times 10^{3} \mathrm{~mm}^{2}$
STEP 2: To find load carrying capacity of column (P)
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}------------($ (IS 456-2000, P. No: 81, C. No: B-3)
$\mathrm{P}=6 \times 235.09 \times 10^{3}+190 \times 4908.73$
$\mathrm{P}=2343.20 \times 10^{3} \mathrm{~N}$
$\mathrm{P}=2343.20 \mathrm{KN}$
2) A short column $400 \mathrm{~mm} \times 500 \mathrm{~mm}$ in section is reinforced with 8 bars of 20 mm diameter. Find load carrying capacity of column. Use $\mathrm{M}_{20} \& \mathrm{Fe} 415$. Use WSM Solution:
Given Data
Width of column $=b=400 \mathrm{~mm}$
Depth of column= $\mathrm{D}=500 \mathrm{~mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=8$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=8 \times \frac{\pi}{4} \mathrm{X} \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=8 x \frac{\pi}{4} \times 20^{2}=2513.27 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}, \quad 6_{\mathrm{cc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $6_{\text {sc }}=190 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)

STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
$\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}-\mathrm{Asc}=(400 \times 500)-2513.27=197.48 \times 10^{3} \mathrm{~mm}^{2}$
STEP 2: To find load carrying capacity of column (P)

$$
\begin{aligned}
& \mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}-------------(\text { IS } 456-2000, \mathrm{P} . \text { No: } 81, \mathrm{C} . \text { No: B-3) } \\
& \mathrm{P}=5 \times 197.48 \times 10^{3}+190 \times 2513.27 \\
& \mathrm{P}=1464.95 \times 10^{3} \mathrm{~N} \\
& \mathrm{P}=1464.95 \mathrm{KN}
\end{aligned}
$$

3) A column $350 \mathrm{~mm} \times 500 \mathrm{~mm}$ in cross section is reinforced with 8 bars of 20 mm diameter, floor to floor height is 3.7 m \& depth of beam is 0.5 m . Find load carrying capacity of column. Use $\mathrm{M}_{20} \& \mathrm{Fe} 415$. Use WSM
Solution:
Given Data
Width of column $=b=350 \mathrm{~mm}$
Depth of column $=\mathrm{D}=500 \mathrm{~mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=8$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=8 \times \frac{\pi}{4} \times \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=8 x \frac{\pi}{4} \times 20^{2}=2513.27 \mathrm{~mm}^{2}$
Effective length $=L_{\text {eff }}=$ Floor to floor height - Depth of Beam
Effective length $=L_{\text {eff }}=3.7-0.5=3.2 \mathrm{~m}=3200 \mathrm{~mm}$
Hence $\frac{\mathrm{L}_{\text {eff }}}{\text { Least lateral dimension }}=\frac{3200}{350}=9.142<12$
Thus the column is short
$\mathrm{M}_{20}, \quad 6_{\mathrm{cc}}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $6_{\text {sc }}=190$ N/mm ${ }^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
$\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}-$ Asc $=(350 \times 500)-2513.27=172.486 \times 10^{3} \mathrm{~mm}^{2}$
STEP 2: To find load carrying capacity of column (P)

$$
\begin{aligned}
& \mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}------------(\text { IS } 456-2000, \mathrm{P} . \text { No: } 81, \mathrm{C} . \text { No: B-3) } \\
& \mathrm{P}=5 \times 172.486 \times 10^{3}+190 \times 2513.27 \\
& \mathrm{P}=1339.95 \times 10^{3} \mathrm{~N} \\
& \mathrm{P}=1339.95 \mathrm{KN}
\end{aligned}
$$

4) A column $300 \mathrm{~mm} \times 450 \mathrm{~mm}$ in cross section is reinforced with 6 bars of 20 mm diameter. The column is 4 m long and is effectively held in position and restrained against rotation at both ends. Find load carrying capacity of column. Use M_{15} \& Fe 250. Use WSM
Solution:

Given Data
Width of column $=b=300 \mathrm{~mm}$
Depth of column $=\mathrm{D}=450 \mathrm{~mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=6$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=6 \times \frac{\pi}{4} \times \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=6 x \frac{\pi}{4} \times 20^{2}=1884.95 \mathrm{~mm}^{2}$
$\mathrm{L}=4 \mathrm{~m}$
Effectively held in position and restrained against rotation at both ends. (Both ends fixed) (P. no:94, Table No:28)
Effective length $=L_{\text {eff }}=0.65 \times \mathrm{L}=0.65 \times 4=2.6 \mathrm{~m}=2600 \mathrm{~mm}$

Hence $\frac{\mathrm{L}_{\text {eff }}}{\text { Least lateral dimension }}=\frac{2600}{300}=8.667<12$
Thus the column is short
$\mathrm{M}_{15}, \quad 6_{\mathrm{cc}}=4 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe $250,6_{\text {sc }}=130 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
$\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}-\mathrm{Asc}=(300 \times 450)-1884.95=133.115 \times 10^{3} \mathrm{~mm}^{2}$
STEP 2: To find load carrying capacity of column (P)

$$
\begin{aligned}
& \mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\text {sc }} \mathrm{xA}_{\text {sc }}-------------(\text { IS } 456-2000, \mathrm{P} . \text { No: } 81, \mathrm{C} . \text { No: B-3) } \\
& \mathrm{P}=4 \times 133.11 \times 10^{3}+130 \times 1884.95 \\
& \mathrm{P}=777.50 \times 10^{3} \mathrm{~N} \\
& \mathrm{P}=777.50 \mathrm{KN}
\end{aligned}
$$

5) A circular column having diameter 400 mm is reinforced with 8 bars of 16 mm diameter. The column is 3 m long and is effectively held in position at both ends but not restrained against rotation. Find load carrying capacity of column. Use $\mathrm{M}_{25} \& \mathrm{Fe} 415$. Use WSM Solution:
Given Data
Diameter of column $=\mathrm{D}=400 \mathrm{~mm}$

$$
\phi=16 \mathrm{~mm}
$$

No of bar $=8$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=8 \times \frac{\pi}{4} \times \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=8 x \frac{\pi}{4} \times 16^{2}=1608.49 \mathrm{~mm}^{2}$
$\mathrm{L}=3 \mathrm{~m}$
Effectively held in position at both ends but not restrained against rotation
(Both end Hinged) (P. no:94, Table No:28)
Effective length $=L_{\text {eff }}=\mathrm{L}=3 \mathrm{~m}=3000 \mathrm{~mm}$
Hence $\frac{\mathrm{L}_{\text {eff }}}{\text { Least lateral dimension }}=\frac{3000}{400}=7.5<12$
Thus the column is short
$\mathrm{M}_{25}, \quad 6 \mathrm{cc}=6 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $6_{\text {sc }}=190 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
$\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}-\mathrm{Asc}$

$$
\begin{aligned}
& A_{c}=\frac{\pi}{4} \times D^{2}-A_{s c} \\
& A_{c}=\frac{\pi}{4} \times 400^{2}-1608.49 \\
& A_{c}=124.055 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

STEP 2: To find load carrying capacity of column (P)
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA} \mathrm{c}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA} \mathrm{sc}_{\mathrm{cc}}-----------($ (IS 456-2000, P. No: 81, C. No: B-3)
$\mathrm{P}=6 \times 124.055 \times 10^{3}+190 \times 1608.49$
$\mathrm{P}=1049.94 \times 10^{3} \mathrm{~N}$
$\mathrm{P}=1049.94 \mathrm{KN}$
6) A circular column having diameter 500 mm is reinforced with 8 bars of 16 mm diameter. The column is 8 m long and is effectively held in position at both ends but not restrained against rotation. Find load carrying capacity of column. Use $\mathrm{M}_{20} \& \mathrm{Fe} 415$. Use WSM Solution:

Given Data

Diameter of column $=\mathrm{D}=500 \mathrm{~mm}$

$$
\phi=16 \mathrm{~mm}
$$

No of bar $=8$
Cross Sectional area of longitudinal Steel $=\mathrm{A}_{\mathrm{sc}}=8 \times \frac{\pi}{4} \mathrm{X} \phi^{2}$
$\mathrm{A}_{\mathrm{sc}}=8 x \frac{\pi}{4} \times 16^{2}=1608.49 \mathrm{~mm}^{2}$
$\mathrm{L}=8 \mathrm{~m}$
Effectively held in position at both ends but not restrained against rotation
(Both end Hinged) (P. no:94, Table No:28)
Effective length $=$ Leff $=\mathrm{L}=8 \mathrm{~m}=8000 \mathrm{~mm}$

Hence $\frac{\mathrm{L}_{\text {eff }}}{\text { Least lateral dimension }}=\frac{8000}{500}=16>12$
Thus the column is long
Reduction Factor $=\mathrm{C}_{\mathrm{r}}(\mathrm{IS} 456: 2000, \mathrm{P} \mathrm{No:81}, \mathrm{C}. \mathrm{No:B-3.3)}$
$\mathrm{C}_{\mathrm{r}}=\left(1.25-\frac{L_{e f f}}{48 b}\right)$
$\mathrm{C}_{\mathrm{r}}=\left(1.25-\frac{8000}{48 \times 500}\right)$
$\mathrm{C}_{\mathrm{r}}=0.9166$
$\mathrm{M}_{25}, \quad 6_{\mathrm{cc}}=5 \mathrm{~N} / \mathrm{N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, $6_{\text {sc }}=190 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find Area of Concrete (Ac)
Area of Concrete $=$ Total Gross Area - Area of longitudinal Steel
$\mathrm{A}_{\mathrm{c}}=\mathrm{Ag}-\mathrm{Asc}$

$$
\begin{aligned}
& A_{c}=\frac{\pi}{4} \times D^{2}-A_{s c} \\
& A_{c}=\frac{\pi}{4} \times 500^{2}-1608.49 \\
& A_{c}=194.741 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

STEP 2: To find load carrying capacity of column (P)
$\mathrm{P}=\mathrm{C}_{\mathrm{r}} x\left[6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}\right]------------(\mathrm{IS} 456-2000, \mathrm{P} . \mathrm{No}: 81, \mathrm{C}$. No: B-3)
$\mathrm{P}=0.9166 \times\left[5 \times 194.741 \times 10^{3}+190 \times 1608.49\right]$
$\mathrm{P}=1172.62 \times 10^{3} \mathrm{~N}$
$\mathrm{P}=1172.62 \mathrm{KN}$

Type II: Design of axially loaded column

Design Procedure

Given Data

STEP 1:: To find size of column

Assuming area of steel $=1 \%$ of gross area

$$
\begin{aligned}
& A_{s c}=1 \% \text { of } \mathrm{A}_{\mathrm{g}} \\
& A_{s c}=\frac{1}{100} \times \mathrm{A}_{\mathrm{g}} \\
& A_{s c}=0.01 \mathrm{x} \mathrm{~A}_{\mathrm{g}}------------(1)
\end{aligned}
$$

Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}} \quad$ From equation (1)
$A_{c}=0.99$ x A $_{\mathrm{g}}-------------(2)$
$\mathrm{P}=6_{c \mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}------------$ (IS 456-2000, P. No: 81, C. No: B-3) For Square and rectangular column
P=1.05 x [$\left.6_{c c} \mathrm{xA}_{c}+6_{\mathrm{sc}} \mathrm{xA} \mathrm{s}_{\mathrm{sc}}\right]-------------($ (IS 456-2000, P. No: 81, C. No: B-3.2) For Circular column
From equation (1) \& (2)
$\mathrm{A}_{\mathrm{g}}=$?

Assuming square column
$B \times D=A_{g}$
$\mathrm{B}=\mathrm{D}$ (square column)
$\mathrm{B} \times \mathrm{B}=\mathrm{Ag}$
$B^{2}=A_{g}$
$\mathrm{B}=$?
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)
$e_{x \text { min }}=\left[\frac{l_{x}}{500}+\frac{D}{30}\right]$ or 20 mm (Which is greater)
$\frac{e_{x \min }}{D} \leq 0.05$ (OK)
$e_{y \text { min }}=\left[\frac{l_{y}}{500}+\frac{B}{30}\right]$ or 20 mm (Which is greater)
$\frac{e_{y \text { min }}}{B} \leq 0.05$ ($\mathrm{OK)}$
STEP 3: To find area of longitudinal reinforcement
From equation (1)
$\mathrm{A}_{\mathrm{sc}}=0.01 \mathrm{x} \mathrm{Ag}$
Assume diameter of bar $=\Phi=$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}$
STEP 4:: Check for $\mathrm{A}_{\text {sc }}($ IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=$?
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} x \mathrm{BxD}(\mathrm{OK})$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} x \mathrm{~B} \times \mathrm{D}(\mathrm{OK})$

STEP 5: Design of lateral ties (IS 456-2000, P. No: 49, C. No: 26.5.3.2-c)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
b) Spacing For Square or Rectangular Column
i) Least lateral dimension
ii) $16 \times$ Daimeter of bar
iii) 300 mm

Taking least value of i , ii and iii

For circular Column

i) 75 mm
ii) $\frac{1}{6} x$ Core Diameter $>25 \mathrm{~mm}$

$$
=\frac{1}{6} x[\mathrm{D}-(2 \mathrm{xClear} \text { Cover })]>25 \mathrm{~mm}
$$

Assuimng clear cover $=$?
Taking least value of i and ii

1) Design a short column to carry axial load of 2000 KN over unsupported length of 3.4 m. Use M_{15} \& Fe 415. Use WSM

Solution:
Given Data
Axial Load= $\mathrm{P}=2000 \mathrm{KN}=2000 \times 10^{3} \mathrm{~N}$
Assume Unsupported length $=$ Effective Length $=3.4 \mathrm{~m}=3400 \mathrm{~mm}$
$\mathrm{M}_{15}, \quad 6 \mathrm{cc}=4 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, 6sc $=190 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find size of column
Assuming area of steel $=1 \%$ of gross area

$$
\begin{align*}
& A_{s c}=1 \% \text { of } \mathrm{A}_{\mathrm{g}} \\
& A_{s c}=\frac{1}{100} \times \mathrm{A}_{\mathrm{g}} \\
& A_{s c}=0.01 \mathrm{x} \mathrm{~A}_{\mathrm{g}} \tag{1}
\end{align*}
$$

Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}}$ From equation (1)
$A_{c}=0.99 \mathrm{x} \mathrm{A}_{\mathrm{g}}-------------(2)$
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}-\cdots----------($ IS 456-2000, P. No: 81, C. No: B-3)
From equation (1) \& (2)
$2000 \times 10^{3}=4 \times 0.99 \mathrm{~A}_{\mathrm{g}}+190 \times 0.01 \mathrm{~A}_{\mathrm{g}}$
$2000 \times 10^{3}=5.86 \mathrm{~A}_{\mathrm{g}}$
$A_{g}=314.296 \times 10^{3} \mathrm{~mm}^{2}$
Assuming square column
$B \times D=A g$
$\mathrm{B}=\mathrm{D}$ (square column)
$\mathrm{B} \times \mathrm{B}=\mathrm{Ag}_{\mathrm{g}}$
$\mathrm{B}^{2}=\mathrm{Ag}_{\mathrm{g}}=314.296 \times 10^{3}$
$\mathrm{B}=584.20 \mathrm{~mm} \cong 590 \mathrm{~mm}$
$\mathrm{B}=\mathrm{D}=590 \mathrm{~mm}$
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)
$e_{x \min }=\left[\frac{l_{x}}{500}+\frac{D}{30}\right]$ or 20 mm (Which is greater)
$e_{x \min }=\left[\frac{3400}{500}+\frac{590}{30}\right]$ or 20 mm
$e_{x \text { min }}=26.46 \mathrm{~mm}$ or 20 mm
$e_{x \text { min }}=26.46 \mathrm{~mm}$
$\frac{e_{x \min }}{D}=\frac{26.46}{590}=0.0448 \leq 0.05(\mathrm{OK})$
$e_{y \text { min }}=\left[\frac{l_{y}}{500}+\frac{B}{30}\right]$ or 20 mm (Which is greater)
$e_{y \text { min }}=\left[\frac{3400}{500}+\frac{590}{30}\right]$ or 20 mm
$e_{y \text { min }}=26.46 \mathrm{~mm}$ or 20 mm
$e_{y \text { min }}=26.46 \mathrm{~mm}$
$\frac{e_{y \min }}{B}=\frac{26.46}{590}=0.0448 \leq 0.05(\mathrm{OK})$
Provide size of column $590 \mathrm{~mm} \times 590 \mathrm{~mm}$
STEP 3: To find area of longitudinal reinforcement
From equation (1)

$$
\mathrm{A}_{\mathrm{sc}}=0.01 \times \mathrm{A}_{\mathrm{g}}=0.01 \times(590 \times 590)=3481 \mathrm{~mm}^{2}
$$

Assume diameter of bar $=\Phi=25 \mathrm{~mm}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{3481}{(\pi / 4) \times 25^{2}}=7.09 \cong 8$
Providing 8 bars of 25 mm diameter
STEP 4: Check for $\mathrm{A}_{\text {sc }}$ (IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=8 x \frac{\pi}{4}$ X $25^{2}=3926.99 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} x \mathrm{~B} \times \mathrm{D}$
$3926.99>\frac{0.8}{100} \times 590 \times 590$
$3926.99 \mathrm{~mm}^{2}>2784.8 \mathrm{~mm}^{2}$ (OK)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} \times$ B x D
$3926.99<\frac{6}{100} \times 590 \times 590$
$3926.99 \mathrm{~mm}^{2}<20886 \mathrm{~mm}^{2}$ (OK)
Providing 8 bars of 25 mm diameter
STEP 5: Design of lateral ties (IS 456-2000, P. No: 49, C. No: 26.5.3.2 - c)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
Diameter $=\left(\frac{1}{4} \times 25\right)$ or 6 mm
Diameter $=6.25$ or 6 mm
Diameter $=6.25 \cong 8 \mathrm{~mm}$
providing $8 \mathrm{~mm} \phi$ of lateral ties
b) Spacing
i) Least lateral dimension $=590 \mathrm{~mm}$
ii) $16 \times$ Daimeter of bar $=16 \times 25=400 \mathrm{~mm}$
iii) 300 mm

Taking least value of i , ii and iii
Spacing $=300 \mathrm{~mm}$
Providing $8 \mathrm{~mm} \phi$ lateral ties @ $300 \mathrm{~mm} \mathrm{C/C}$
2) Design a short column to carry axial load of 1000 KN over unsupported length of 3 m. Use M_{20} \& Fe 250. Use WSM

Solution:
Given Data
Axial Load $=\mathrm{P}=1000 \mathrm{KN}=1000 \times 10^{3} \mathrm{~N}$
Assume Unsupported length $=$ Effective Length $=3 \mathrm{~m}=3000 \mathrm{~mm}$
$\mathrm{M}_{20}, \quad 6 \mathrm{cc}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 250 , $6 \mathrm{sc}=130 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find size of column
Assuming area of steel $=1 \%$ of gross area
$A_{s c}=1 \%$ of A_{g}
$A_{s c}=\frac{1}{100} \mathrm{x} \mathrm{A}_{\mathrm{g}}$
$A_{s c}=0.01 \mathrm{x} \mathrm{A}_{\mathrm{g}}$
Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}} \quad$ From equation (1)
$A_{c}=0.99 \mathrm{x} \mathrm{A}_{\mathrm{g}}------------$ (2)
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}-\cdots----------($ IS 456-2000, P. No: 81, C. No: B-3)
From equation (1) \& (2)

$$
\begin{aligned}
& 1000 \times 10^{3}=5 \times 0.99 \mathrm{~A}_{\mathrm{g}}+130 \times 0.01 \mathrm{~A}_{\mathrm{g}} \\
& 1000 \times 10^{3}=6.25 \mathrm{~A}_{\mathrm{g}} \\
& \mathrm{~A}_{\mathrm{g}}=160 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

Assuming square column
$B \times D=A_{g}$
$\mathrm{B}=\mathrm{D}$ (square column)
$B \times B=A_{g}$
$B^{2}=A_{g}=160 \times 10^{3}$
$B=400 \mathrm{~mm}$
$\mathrm{B}=\mathrm{D}=400 \mathrm{~mm}$
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)

$$
\begin{aligned}
& e_{x \text { min }}=\left[\frac{l_{x}}{500}+\frac{D}{30}\right] \text { or } 20 \mathrm{~mm}(\text { Which is greater }) \\
& e_{x \text { min }}=\left[\frac{3000}{500}+\frac{400}{30}\right] \text { or } 20 \mathrm{~mm} \\
& e_{x \text { min }}=19.33 \mathrm{~mm} \text { or } 20 \mathrm{~mm} \\
& e_{x \text { min }}=20 \mathrm{~mm} \\
& \frac{e_{x \text { min }}}{D}=\frac{20}{400}=0.05 \leq 0.05(\mathrm{OK}) \\
& e_{y \text { min }}=\left[\frac{l_{y}}{500}+\frac{B}{30}\right] \text { or } 20 \mathrm{~mm}(\text { Which is greater) } \\
& e_{y \text { min }}=\left[\frac{3000}{500}+\frac{400}{30}\right] \text { or } 20 \mathrm{~mm} \\
& e_{y \text { min }}=19.33 \mathrm{~mm} \text { or } 20 \mathrm{~mm} \\
& e_{y \text { min }}=20 \mathrm{~mm} \\
& \frac{e_{y \text { min }}}{B}=\frac{20}{400}=0.05 \leq 0.05(\mathrm{OK})
\end{aligned}
$$

Provide size of column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$
STEP 3: To find area of longitudinal reinforcement
From equation (1)
$\mathrm{A}_{\mathrm{sc}}=0.01 \times \mathrm{A}_{\mathrm{g}}=0.01 \times(400 \times 400)=1600 \mathrm{~mm}^{2}$
Assume diameter of bar $=\Phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1600}{(\pi / 4) \times 20^{2}}=5.092 \cong 6$
Providing 6 bars of 20 mm diameter
STEP 4: Check for A_{sc} (IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=6 x \frac{\pi}{4} \times 20^{2}=1884.95 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} \times \mathrm{B} \times \mathrm{D}$
$1884.95>\frac{0.8}{100} x 400 \times 400$
$1884.95 \mathrm{~mm}^{2}>1280 \mathrm{~mm}^{2}$ (OK)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} \times \mathrm{B} \times \mathrm{D}$
$1884.95<\frac{6}{100} \times 400 \times 400$
$1884.95 \mathrm{~mm}^{2}<9600 \mathrm{~mm}^{2}$ (OK)
Providing 6 bars of 20 mm diameter

STEP 5: Design of lateral ties (IS 456-2000, P. No: 49, C. No: 26.5.3.2-c)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
Diameter $=\left(\frac{1}{4} \times 20\right)$ or 6 mm
Diameter $=5$ or 6 mm
Diameter=6
providing $6 \mathrm{~mm} \phi$ of lateral ties
b) Spacing
i) Least lateral dimension $=400 \mathrm{~mm}$
ii) $16 \times$ Daimeter of bar $=16 \times 20=400 \mathrm{~mm}$
iii) 300 mm

Taking least value of i, ii and iii
Spacing $=300 \mathrm{~mm}$
Providing $6 \mathrm{~mm} \phi$ lateral ties @ $300 \mathrm{~mm} \mathrm{C/C}$
3) Design a short rectangular column to carry axial load of 900 KN . The length of column is 3.2 m , the column is effectively held in position at both ends but not restrained against rotation at one end. Use M_{20} \& Fe 250. Use WSM Solution:
Given Data
Axial Load $=\mathrm{P}=900 \mathrm{KN}=900 \times 10^{3} \mathrm{~N}$
$\mathrm{L}=3.2 \mathrm{~m}$
The column is effectively held in position at both ends but not restrained against rotation at one end (One ends fixed and other hinged) (P. no:94, Table No:28)
$L_{\text {eff }}=0.8 \times \mathrm{L}=0.8 \times 3.2=2.560 \mathrm{~m}=2560 \mathrm{~mm}$
$\mathrm{M}_{20}, \quad 6 \mathrm{cc}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 250 , $6 \mathrm{sc}=130 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)

STEP 1: To find size of column

Assuming area of steel $=1 \%$ of gross area

$$
\begin{aligned}
& A_{s c}=1 \% \text { of } \mathrm{A}_{\mathrm{g}} \\
& A_{s c}=\frac{1}{100} \mathrm{x} \mathrm{~A}_{\mathrm{g}} \\
& A_{s c}=0.01 \mathrm{x} \mathrm{~A}_{\mathrm{g}}------------(1)
\end{aligned}
$$

Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}}$ From equation (1)
$A_{c}=0.99 \mathrm{x} \mathrm{A}_{\mathrm{g}}-------------(2)$
$\mathrm{P}=6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA}_{\mathrm{sc}}-----------($ IS 456-2000, P. No: 81, C. No: B-3)
From equation (1) \& (2)
$900 \times 10^{3}=5 \times 0.99 \mathrm{~A}_{\mathrm{g}}+130 \times 0.01 \mathrm{~A}_{\mathrm{g}}$
$900 \times 10^{3}=6.25 \mathrm{~A}_{\mathrm{g}}$
$\mathrm{A}_{\mathrm{g}}=144 \times 10^{3} \mathrm{~mm}^{2}$
Assuming B=400 mm
$\mathrm{B} \times \mathrm{D}=\mathrm{Ag}_{\mathrm{g}}$
$B=400 \mathrm{~mm}$
$400 \times \mathrm{D}=144 \times 10^{3}$
$\mathrm{D}=360 \mathrm{~mm} \cong 425 \mathrm{~mm}$
Note : Take value D more $B=400 \mathrm{~mm}$ for satisfaction of check
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)

$$
\begin{aligned}
& e_{x \min }=\left[\frac{l_{x}}{500}+\frac{D}{30}\right] \text { or } 20 \mathrm{~mm}(\text { Which is greater }) \\
& e_{x \min }=\left[\frac{2560}{500}+\frac{425}{30}\right] \text { or } 20 \mathrm{~mm} \\
& e_{x \text { min }}=19.28 \mathrm{~mm} \text { or } 20 \mathrm{~mm} \\
& e_{x \min }=20 \mathrm{~mm} \\
& \frac{e_{x \min }}{D}=\frac{20}{425}=0.0470 \leq 0.05(\mathrm{OK}) \\
& e_{y \text { min }}=\left[\frac{l_{y}}{500}+\frac{B}{30}\right] \text { or } 20 \mathrm{~mm}(\text { Which is greater) } \\
& e_{y \text { min }}=\left[\frac{2650}{500}+\frac{400}{30}\right] \text { or } 20 \mathrm{~mm} \\
& e_{y \text { min }}=18.633 \mathrm{~mm} \text { or } 20 \mathrm{~mm} \\
& e_{y \text { min }}=20 \mathrm{~mm} \\
& \frac{e_{y \text { min }}}{B}=\frac{20}{400}=0.05 \leq 0.05(\mathrm{OK})
\end{aligned}
$$

Provide size of column $400 \mathrm{~mm} \times 425 \mathrm{~mm}$
STEP 3: To find area of longitudinal reinforcement
From equation (1)

$$
\mathrm{A}_{\mathrm{sc}}=0.01 \times \mathrm{A}_{\mathrm{g}}=0.01 \times(400 \times 425)=1700 \mathrm{~mm}^{2}
$$

Assume diameter of bar $=\Phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1700}{(\pi / 4) \times 20^{2}}=5.411 \cong 6$
Providing 6 bars of 20 mm diameter
STEP 4: Check for A_{sc} (IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=6 x \frac{\pi}{4} \times 20^{2}=1884.95 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} \times \mathrm{B} \times \mathrm{D}$
$1884.95>\frac{0.8}{100} x 400 \times 425$
$1884.95 \mathrm{~mm}^{2}>1360 \mathrm{~mm}^{2}$ (OK)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} \times \mathrm{B} \times \mathrm{D}$
$1884.95<\frac{6}{100} \times 400 \times 425$
$1884.95 \mathrm{~mm}^{2}<10200 \mathrm{~mm}^{2}$ (OK)
Providing 6 bars of 20 mm diameter
STEP 5: Design of lateral ties (IS 456-2000, P. No: 49, C. No: 26.5.3.2 - c)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
Diameter $=\left(\frac{1}{4} \times 20\right)$ or 6 mm
Diameter=5 or 6 mm
Diameter $=6$
providing $6 \mathrm{~mm} \phi$ of lateral ties
b) Spacing
i) Least lateral dimension $=400 \mathrm{~mm}$
ii) $16 \times$ Daimeter of $b a r=16 \times 20=400 \mathrm{~mm}$
iii) 300 mm

Taking least value of i, ii and iii
Spacing $=300 \mathrm{~mm}$
Providing $6 \mathrm{~mm} \phi$ lateral ties @ $300 \mathrm{~mm} \mathrm{C/C}$
4) Design a circular column to carry axial load of 1200 KN . The effective length of column is 3.4 m . Use M_{25} \& Fe 415. Use WSM
Solution:
Given Data

Axial Load $=\mathrm{P}=1200 \mathrm{KN}=1200 \times 10^{3} \mathrm{~N}$
$L_{\text {eff }}=3.4 \mathrm{~m}=3400 \mathrm{~mm}$
$\mathrm{M}_{25}, \quad 6 \mathrm{cc}=6 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415 , $6 \mathrm{sc}=190$ N/mm ${ }^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find size of column
Assuming area of steel $=1 \%$ of gross area
$A_{s c}=1 \%$ of A_{g}
$A_{s c}=\frac{1}{100} \mathrm{x} \mathrm{A}_{\mathrm{g}}$
$A_{s c}=0.01 \mathrm{x} \mathrm{A}_{\mathrm{g}}$
Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}} \quad$ From equation (1)
$A_{c}=0.99 \mathrm{x} \mathrm{A}_{\mathrm{g}}------------$ (2)
$\mathrm{P}=1.05 \mathrm{x}\left[6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA} \mathrm{sc}_{\mathrm{sc}}\right]------------($ (IS 456-2000, P. No: 81, C. No: B-3.2)
From equation (1) \& (2)
$1200 \times 10^{3}=1.05 \times\left[6 \times 0.99 \mathrm{~A}_{\mathrm{g}}+190 \times 0.01 \mathrm{~A}_{\mathrm{g}}\right]$
$1200 \times 10^{3}=8.232 \mathrm{~A}_{\mathrm{g}}$
$\mathrm{A}_{\mathrm{g}}=145.77 \times 10^{3} \mathrm{~mm}^{2}$
The column is circular
$\mathrm{Ag}=145.77 \times 10^{3} \mathrm{~mm}^{2}$
$\frac{\pi}{4} D^{2}=145.77 \times 10^{3}$
$D=430.81 \mathrm{~mm} \cong 450 \mathrm{~mm}$
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)
$e_{x \text { min }}=\left[\frac{l_{x}}{500}+\frac{D}{30}\right]$ or 20 mm (Which is greater)
$e_{x \text { min }}=\left[\frac{3400}{500}+\frac{450}{30}\right]$ or 20 mm
$e_{x \text { min }}=21.8 \mathrm{~mm}$ or 20 mm
$e_{x \text { min }}=21.8 \mathrm{~mm}$
$\frac{e_{x \min }}{D}=\frac{21.8}{450}=0.0484 \leq 0.05 \quad(\mathrm{OK})$
Provide Diameter of column 450 mm
STEP 3: To find area of longitudinal reinforcement
From equation (1)
$\mathrm{A}_{\mathrm{sc}}=0.01 \times \mathrm{A}_{\mathrm{g}}=0.01 \times \frac{\pi}{4} D^{2}=0.01 \times \frac{\pi}{4} \times 450^{2}=1590.43 \mathrm{~mm}^{2}$
Assume diameter of bar $=\Phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{1590.43}{(\pi / 4) \times 20^{2}}=5.0625 \cong 6$
Providing 6 bars of 20 mm diameter
STEP 4: Check for A_{sc} (IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=6 x \frac{\pi}{4} \times 20^{2}=1884.95 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} x \frac{\pi}{4} x D^{2}$
$1884.95>\frac{0.8}{100} x \frac{\pi}{4} \times 450^{2}$
$1884.95 \mathrm{~mm}^{2}>1272.345 \mathrm{~mm}^{2}$ (OK)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} x \frac{\pi}{4} x D^{2}$
$1884.95<\frac{6}{100} \times \frac{\pi}{4} \times 450^{2}$
$1884.95 \mathrm{~mm}^{2}<9542.58 \mathrm{~mm}^{2}$ (OK)
Providing 6 bars of 20 mm diameter
STEP 5: Design of helical reinforcement (IS 456-2000, P. No: 49, C. No: 26.5.3.2-d)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
Diameter $=\left(\frac{1}{4} \times 20\right)$ or 6 mm
Diameter $=5 \mathrm{~mm}$ or 6 mm
Diameter $=6 \mathrm{~mm}$
providing $6 \mathrm{~mm} \phi$ of lateral ties
b) Pitch
i) 75 mm
ii) $\frac{1}{6} x$ Core Diameter $>25 \mathrm{~mm}$

$$
=\frac{1}{6} x[\mathrm{D}-(2 \mathrm{xClear} \text { Cover })]>25 \mathrm{~mm}
$$

Assuimng clear cover $=40 \mathrm{~mm}$

$$
=\frac{1}{6} x[450-(2 \times 40)]=61.67 \mathrm{~mm}>25 \mathrm{~mm}
$$

Taking least value of i and ii
Pitch $=61.67 \mathrm{~mm} \cong 60 \mathrm{~mm}$
Providing $6 \mathrm{~mm} \phi$ spiral@ 60 mm C/C
5) Design a circular column to carry axial load of 2500 KN . The effective length of column is 3.5 m . Use M_{25} \& Fe 415 . Use WSM
Solution:
Given Data
Axial Load $=\mathrm{P}=2500 \mathrm{KN}=2500 \times 10^{3} \mathrm{~N}$
$L_{\text {eff }}=3.5 \mathrm{~m}=3500 \mathrm{~mm}$
$\mathrm{M}_{25}, \quad 6 \mathrm{cc}=6 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, 6sc $=190$ N/mm ${ }^{2}$ (IS 456:2000, Table No: 22, P No:82)

STEP 1: To find size of column

Assuming area of steel $=1 \%$ of gross area

$$
\begin{align*}
A_{s c} & =1 \% \text { of } \mathrm{A}_{\mathrm{g}} \\
A_{s c} & =\frac{1}{100} \times \mathrm{A}_{\mathrm{g}} \\
A_{s c} & =0.01 \mathrm{x} \mathrm{~A}_{\mathrm{g}}- \tag{1}
\end{align*}
$$

Area of concrete
$A_{c}=A_{g}-A_{s c}$
$A_{c}=A_{g}-0.01 \times \mathrm{A}_{\mathrm{g}} \quad$ From equation (1)
$A_{c}=0.99$ x A $_{\mathrm{g}}------------$ (2)
$\mathrm{P}=1.05 \mathrm{x}\left[6_{\mathrm{cc}} \mathrm{xA}_{\mathrm{c}}+6_{\mathrm{sc}} \mathrm{xA} \mathrm{A}_{\mathrm{sc}}\right]------------($ IS 456-2000, P. No: 81, C. No: B-3.2)
From equation (1) \& (2)

$$
\begin{aligned}
& 2500 \times 10^{3}=1.05 \times\left[6 \times 0.99 \mathrm{~A}_{\mathrm{g}}+190 \times 0.01 \mathrm{~A}_{\mathrm{g}}\right] \\
& 2500 \times 10^{3}=8.232 \mathrm{~A}_{\mathrm{g}} \\
& \mathrm{~A}_{\mathrm{g}}=303.69 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

The column is circular
$\mathrm{Ag}=303.69 \times 10^{3} \mathrm{~mm}^{2}$
$\frac{\pi}{4} D^{2}=303.69 \times 10^{3}$
$D=621.82 \mathrm{~mm} \cong 650 \mathrm{~mm}$
STEP 2: Check for minimum eccentricity (IS 456-2000, P. No: 42, C. No: 25.4)
$e_{x \text { min }}=\left[\frac{l_{x}}{500}+\frac{D}{30}\right]$ or 20 mm (Which is greater)
$e_{x \text { min }}=\left[\frac{3500}{500}+\frac{650}{30}\right]$ or 20 mm
$e_{x \text { min }}=28.66 \mathrm{~mm}$ or 20 mm
$e_{x \text { min }}=28.66 \mathrm{~mm}$
$\frac{e_{x \text { min }}}{D}=\frac{28.66}{650}=0.0441 \leq 0.05(\mathrm{OK})$
Provide Diameter of column 650 mm
STEP 3: To find area of longitudinal reinforcement
From equation (1)
$\mathrm{A}_{\mathrm{sc}}=0.01 \times \mathrm{A}_{\mathrm{g}}=0.01 \times \frac{\pi}{4} D^{2}=0.01 \times \frac{\pi}{4} \times 650^{2}=3318.30 \mathrm{~mm}^{2}$
Assume diameter of bar $=\Phi=25 \mathrm{~mm}$
Number of bars $=\frac{A s c}{(\pi / 4) \times \phi^{2}}=\frac{3318.30}{(\pi / 4) \times 25^{2}}=6.75 \cong 8$
Providing 8 bars of 25 mm diameter
STEP 4: Check for $\mathrm{A}_{\text {sc }}$ (IS 456-2000, P. No: 48, C. No: 26.5.3.1)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)=8 x \frac{\pi}{4}$ X $25^{2}=3926.99 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{sc}}($ Provided $)>\frac{0.8}{100} x \frac{\pi}{4} x D^{2}$
$3926.99>\frac{0.8}{100} x \frac{\pi}{4} \times 650^{2}$
$3926.99 \mathrm{~mm}^{2}>2654.64 \mathrm{~mm}^{2}$ (OK)
$\mathrm{A}_{\mathrm{sc}}($ Provided $)<\frac{6}{100} x \frac{\pi}{4} x D^{2}$
$3926.99<\frac{6}{100} \times \frac{\pi}{4} \times 650^{2}$
$3926.99 \mathrm{~mm}^{2}<19909.84 \mathrm{~mm}^{2}$ (OK)
Providing 8 bars of 25 mm diameter
STEP 5: Design of helical reinforcement (IS 456-2000, P. No: 49, C. No: 26.5.3.2-d)
a) Diameter

Diameter $=\left(\frac{1}{4} x\right.$ Diameter of main bar $)$ or 6 mm (Which is greater)
Diameter $=\left(\frac{1}{4} \times 25\right)$ or 6 mm
Diameter=6.25 mm or 6 mm
Diameter $=6.25 \cong 8 \mathrm{~mm}$
providing $8 \mathrm{~mm} \phi$ of lateral ties
b) Pitch
i) 75 mm
ii) $\frac{1}{6} x$ Core Diameter $>25 \mathrm{~mm}$

$$
=\frac{1}{6} x[\mathrm{D}-(2 \mathrm{xClear} \text { Cover })]>25 \mathrm{~mm}
$$

Assuimng clear cover $=40 \mathrm{~mm}$

$$
=\frac{1}{6} x[650-(2 \mathrm{x} 40)]=95 \mathrm{~mm}>25 \mathrm{~mm}
$$

Taking least value of i and ii
Pitch $=75 \mathrm{~mm}$
Providing $8 \mathrm{~mm} \phi$ spiral@ $75 \mathrm{~mm} \mathrm{C/C}$

Type III: Analysis of eccentrically loaded column

Design Procedure

Given Data

1) A R.C. column 400 mm X 400 mm is reinforced with 4 bars of 25 mm diameter, placed at a cover of 50 mm to the centre of steel bars. Determine the maximum and minimum stresses in concrete if the column is subjected to a load of 400 KN at an eccentricity of 50 mm about one of the axes. Also Check whether the section is safe or not. Use M_{15} and $\mathrm{m}=19$.
Solution:
Given Data:
$\mathrm{B}=400 \mathrm{~mm}$
$\mathrm{D}=400 \mathrm{~mm}$
Eccentricity $=\mathrm{e}=50 \mathrm{~mm}$
Effective Cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
m=19

$$
A_{s c}=4 \times \frac{\pi}{4} \times 25^{2}=1963.50 \mathrm{~mm}^{2}
$$

$\mathrm{M}_{15}, \quad 6 \mathrm{cbc}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
$\mathrm{M}_{15}, \quad 6 \mathrm{cc}=4 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)

STEP 1: Equivalent area of concretes (A_{e}) (IS 456:2000, P No:83, C No. B-4)
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\left(\mathrm{A}_{g}-\mathrm{A}_{s c}\right)+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}-\mathrm{A}_{s c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}+\mathrm{A}_{s c}(1.5 \mathrm{~m}-1)$
$\mathrm{A}_{\mathrm{e}}=(400 \times 400)+1963.50 x(1.5 \times 19-1)$
$\mathrm{A}_{\mathrm{e}}=213993.25 \mathrm{~mm}^{2}$
STEP 2: Equivalent moment of inertia about the centroidal axix $x-x\left(I_{e}\right)$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=\frac{B D^{3}}{12}+(1.5 \mathrm{~m}-1) \mathrm{A}_{s c}\left(\frac{D}{2}-\mathrm{d}^{\prime}\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=\frac{400 x 400^{3}}{12}+(1.5 \times 19-1) 1963.50\left(\frac{400}{2}-50\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=3348.25 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

STEP 3: Calculated direct compressive stress in concrete ($6_{\mathrm{cc} \text {, cal }}$)

$$
\begin{aligned}
6_{c c, c a l} & =\frac{P}{A_{e}} \\
6_{c c, c a l} & =\frac{400 \times 10^{3}}{213996.25}=1.87 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

STEP 4: Calculated bending compressive stress in concrete ($6_{\mathrm{cbc}, \mathrm{cal}}$)
$6_{c b c, c a l}=\frac{M}{Z}=\frac{P e}{I_{e} / y}=\frac{P e}{I_{e}} \frac{D}{2}$
$6_{c b c, c a l}=\frac{400 \times 10^{3} \times 50}{3348.25 \times 10^{6}} x \frac{400}{2}$
$6_{c b c, c a l}=1.19 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 5: Maximum and minimum stresses in concrete
Maximum stress $=6_{\text {max }}=6_{\mathrm{cc}, \text { cal+ }} 6_{\mathrm{cbc}, \mathrm{cal}}$
$6_{\text {max }}=6_{\text {cc, cal }} 6_{\text {cbc, cal }}$
$6_{\text {max }}=1.87+1.19=3.06 \mathrm{~N} / \mathrm{mm}^{2}$
Minimum stress $=6_{\text {min }}=6_{\text {cc, cal- }} 6_{\text {cbc, cal }}$
$6_{\text {min }}=6_{\text {cc, cal }}-6_{\text {cbc, cal }}$
$6_{\text {min }}=1.87-1.19=0.68 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 6: Check the section (IS 456:2000, P No:83, C No. B-4)
$\frac{6_{c c, c a l}}{6_{c c}}+\frac{6_{c b c, c a l}}{6_{c b c}} \leq 1$
$\frac{1.87}{4}+\frac{1.19}{5} \leq 1$
$0.71 \leq 1$ Column section is safe
2) A R.C. column $400 \mathrm{~mm} X 600 \mathrm{~mm}$ is reinforced with 6 bars of 20 mm diameter, placed at a cover of 40 mm from top edge $\& 6$ similar bars at the same cover from the bottom edge. Determine the maximum load on the section, which can be applied at a distance of 80 mm , from the centre line, if the compressive stress in concrete is not exceed $7 \mathrm{~N} / \mathrm{mm}^{2}$. Use M_{20}
Solution:
Given Data:
Solution:
Given Data:
$\mathrm{B}=400 \mathrm{~mm}$
$\mathrm{D}=600 \mathrm{~mm}$
Eccentricity $=\mathrm{e}=80 \mathrm{~mm}$
Effective Cover $=d^{\prime}=40+(20 / 2)=50 \mathrm{~mm}$

$$
\begin{aligned}
& A_{s c}=12 \times \frac{\pi}{4} \times 20^{2}=3769.91 \mathrm{~mm}^{2} \\
& 6_{\max }=7 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$\mathrm{M}_{20}, \quad 6 \mathrm{cbc}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81
$\mathrm{M}_{20}, \quad 6 \mathrm{cc}=5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
$m=\frac{280}{3 \times 6_{\text {cbc }}}=\frac{280}{3 \times 7}=13.33$
STEP 1: Equivalent area of concretes $\left(\mathrm{A}_{\mathrm{e}}\right)$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\left(\mathrm{A}_{g}-\mathrm{A}_{s c}\right)+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}-\mathrm{A}_{s c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}+\mathrm{A}_{s c}(1.5 \mathrm{~m}-1)$
$\mathrm{A}_{\mathrm{e}}=(400 \times 600)+3769.91 x(1.5 \times 13.33-1)$
$\mathrm{A}_{\mathrm{e}}=311609.44 \mathrm{~mm}^{2}$
STEP 2: Equivalent moment of inertia about the centroidal axix x-x $\left(I_{e}\right)$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=\frac{B D^{3}}{12}+(1.5 \mathrm{~m}-1) \mathrm{A}_{s c}\left(\frac{D}{2}-\mathrm{d}^{\prime}\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=\frac{400 \times 600^{3}}{12}+(1.5 \times 13.33-1) \times 13769.91\left(\frac{600}{2}-50\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=11675.59 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

STEP 3: Calculated maximum load on the section
$6_{\text {max }}=\frac{P}{A_{e}}+\frac{M}{Z}$
$6_{\text {max }}=\frac{P}{A_{e}}+\frac{P e}{I_{e}} \frac{D}{2}$
$7=\frac{P}{311609.44}+\frac{P x 80}{11675.59 \times 10^{6}} \times \frac{600}{2}$
$P=1329.61 \times 10^{3} \mathrm{~N}$
$P=1329.61 \mathrm{KN}$
3) A R.C. column 300 mm X 300 mm is reinforced with 4 bars of 25 mm diameter placed at effective cover of 50 mm . Find eccentricity, the line of trust may pass along the YY axis without causing tension in concrete. Take $\mathrm{m}=18$
Solution:
Given Data:
$\mathrm{B}=300 \mathrm{~mm}$
$\mathrm{D}=300 \mathrm{~mm}$
Effective Cover $=d^{\prime}=50 \mathrm{~mm}$
$A_{s c}=4 \times \frac{\pi}{4} \times 25^{2}=1963.50 \mathrm{~mm}^{2}$
$\mathrm{m}=18$

STEP 1: Equivalent area of concretes (A_{e})
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\left(\mathrm{A}_{g}-\mathrm{A}_{s c}\right)+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}-\mathrm{A}_{s c}+1.5 \mathrm{~m} \mathrm{~A}_{\mathrm{sc}}$
$\mathrm{A}_{\mathrm{e}}=\mathrm{A}_{g}+\mathrm{A}_{s c}(1.5 \mathrm{~m}-1)$
$\mathrm{A}_{\mathrm{e}}=(300 x 300)+1963.5 x(1.5 \times 18-1)$
$\mathrm{A}_{\mathrm{e}}=141051 \mathrm{~mm}^{2}$
STEP 2: Equivalent moment of inertia about the centroidal axix $x-x\left(I_{e}\right)$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=\frac{B D^{3}}{12}+(1.5 \mathrm{~m}-1) \mathrm{A}_{s c}\left(\frac{D}{2}-\mathrm{d}^{\prime}\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=\frac{300 \times 300^{3}}{12}+(1.5 \times 18-1) \times 1963.5\left(\frac{300}{2}-50\right)^{2} \\
& \mathrm{I}_{\mathrm{e}}=1185.51 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

STEP 3: If tension in concrete should be just avoided the direct stress and bending stress should be equal for the section

$$
\begin{aligned}
& 6_{c c . c a l}=6_{c b c . c a l} \\
& \frac{P}{A_{e}}=\frac{M}{Z} \\
& \frac{P}{A_{e}}=\frac{P e}{I_{e}} \frac{D}{2} \\
& \frac{1}{A_{e}}=\frac{e}{I_{e}} \frac{D}{2} \\
& \frac{1}{141051}=\frac{e}{1185.51 \times 10^{6}} \frac{300}{2} \\
& e=56.03 \mathrm{~mm}
\end{aligned}
$$

Footing

Introduction: The foundation of your house is a critical part of its structure as it helps distribute the load and minimizes distress against the foundation soil movement, thereby keeping the building stable and secure. Hence, foundations are critical to the structural safety of a building .Depending on the depth of the soil in which the foundation is made, there are two types of foundation used in constructing buildings :

Classification of footing

Isolated Footing: Isolated footing is described as the footing that is offered underneath the column to spread the loads securely towards/to the bed soil. That sort of footing is utilized to assist single columns as well as at the time the columns are organized approximately at significant distance. That is highly reasonable sort of footing. Various well-known forms in the footings plan are: 1) Rectangular Isolated Footing 2) Square Isolated Footing 3) Slope Footing.

Combined Footing: That structure supports the load of 2 or additional columns. Moreover, they are built in trapezoidal or rectangular in form. That footing is required at the time isolated construction overlays/overlaps. Also, low soil bearing is the major causes of obtaining the united/combined footing positioned.

Various famous forms in the footings' plan are: 1) Trapezoidal Combined Footing 2) Rectangular Combined Footing 3) Elliptical Combined Footing.

Strip Footing or Continuous or Wall Footing: A strip footing or wall footing is a concrete's continuous strip that caters to distribute the load-bearing wall's weight over/across a soil's region/area. Moreover, it is the part of a shallow foundation.

Strap Footing: It is a sort of combined footing wherein 2 separated/isolated columns are linked through a strap beam. These footings shift the loads out of/from external column to the internal one, forming bending movement as well as share force within/in strap beams.
Mat or Raft Footing: A raft foundation, even known as a mat foundation, is basically a continuous slab situating/lying on the soil that reaches over the whole footprint of the structure/building, thus assisting the structure as well as shifting its mass/weight towards the land/ground.

Pile Footing: It is needed with regard to low bearing soil to obtain the utmost assistance for the structure. Furthermore, piles appear/come in perpendicular/vertical structure/arrangement that are pierced/drilled into the land/ground for obtaining the required withstand capacity out of/from the deeper/deep soil layer. Moreover, the foundation is situated on piles that remain distinct or in cluster underneath the soil. The foundation's load is passed/transmitted to the deep/deeper soil through those piles.

Well Foundation: Well foundation is a sort of deep foundation that is usually offered beneath the water level with regard to bridges. Furthermore, well or Cassions have been in utilization with regard to bridges' foundations as well as additional structures from Roman as well as Mughal periods.

Design Considerations

(a) Minimum nominal cover (cl. 26.4.2.2 of IS 456)

The minimum nominal cover for the footings should be more than that of other structural elements of the superstructure as the footings are in direct contact with the soil. Clause 26.4.2.2 of IS 456 prescribes a minimum cover of 50 mm for footings. However, the actual cover may be even more depending on the presence of harmful chemicals or minerals, water table etc.
(b) Thickness at the edge of footings
(cls. 34.1.2 and 34.1.3 of IS 456) The minimum thickness at the edge of reinforced and plain concrete footings shall be at least 150 mm for footings on soils and at least 300 mm above the top of piles for footings on piles, as per the stipulation in cl.34.1.2 of IS 456. For plain concrete pedestals, the angle α between the plane passing through the bottom edge of the pedestal and the corresponding junction edge of the column with pedestal and the horizontal plane shall be determined from the following expression (cl.34.1.3 of IS 456)

$$
\tan \alpha \nless 0.9 \sqrt{\frac{100 q_{0}}{f_{\mathrm{c}}}+1}
$$

where $\mathrm{q}_{0}=$ calculated maximum bearing pressure at the base of the pedestal in $\mathrm{N} / \mathrm{mm}^{2}$, and fck $=$ characteristic strength of concrete at 28 days in $\mathrm{N} / \mathrm{mm}^{2}$.
(c) Bending moments (cl. $\mathbf{3 4 . 2}$ of IS 456)

1. It may be necessary to compute the bending moment at several sections of the footing depending on the type of footing, nature of loads and the distribution of pressure at the base of the footing. However, bending moment at any section shall be determined taking all forces acting over the entire area on one side of the section of the footing, which is obtained by passing a vertical plane at that section extending across the footing (cl.34.2.3.1 of IS 456).
2. The critical section of maximum bending moment for the purpose of designing an isolated concrete footing which supports a column, pedestal or wall shall be: (i) at the face of the column, pedestal or wall for footing supporting a concrete column, pedestal or reinforced concrete wall, and halfway between the centre-line and the edge of the wall, for footing under masonry wall (Fig.11.28.10). This is stipulated in cl.34.2.3.2 of IS 456.
d) Shear force (cl. 31.6 and 34.2.4 of IS 456) Footing slabs shall be checked in one-way or two-way shears depending on the nature of bending. If the slab bends primarily in oneway, the footing slab shall be checked in one-way vertical shear. On the other hand, when the bending is primarily two-way, the footing slab shall be checked in two-way shear or punching shear. The respective critical sections and design shear strengths are given below:

1. One-way shear (cl. 34.2.4 of IS 456)

One-way shear has to be checked across the full width of the base slab on a vertical section located from the face of the column, pedestal or wall at a distance equal to (i) effective depth of the footing slab in case of footing slab on soil, and
ii) half the effective depth of the footing slab if the footing slab is on piles. The design shear strength of concrete without shear reinforcement is given in Table 19 of cl.40.2 of IS 456

2. Two-way or punching shear

(cls.31.6 and 34.2.4) Two-way or punching shear shall be checked around the column on a perimeter half the effective depth of the footing slab away from the face of the column or pedestal. The permissible shear stress, when shear reinforcement is not provided, shall not exceed $\mathrm{k} \tau_{\mathrm{c}}$, where $\mathrm{k}_{\mathrm{s}}=(0.5+\beta \mathrm{c})$, but not greater than one, $\beta \mathrm{c}$ being the ratio of short side to long side of the column, and $\tau_{\mathrm{c}}=0.25(\mathrm{fck})^{1 / 2}$ in limit state method of design, as stipulated in cl.31.6.3 of IS 456. Normally, the thickness of the base slab is governed by shear. Hence, the necessary thickness of the slab has to be provided to avoid shear reinforcement.
(e) Bond (cl.34.2.4.3 of IS 456)

The critical section for checking the development length in a footing slab shall be the same planes as those of bending moments in part (c) of this section. Moreover, development length shall be checked at all other sections where they change abruptly. The critical sections for checking the development length are given in cl.34.2.4.3 of IS 456, which further recommends to check the anchorage requirements if the reinforcement is curtailed, which shall be done in accordance with cl.26.2.3 of IS 456.

(f) Tensile reinforcement

(cl.34.3 of IS 456) The distribution of the total tensile reinforcement, calculated in accordance with the moment at critical sections, as specified in part (c) of this section, shall be done as given below for one-way and two-way footing slabs separately. (i) In one-way reinforced footing slabs like wall footings, the reinforcement shall be distributed uniformly across the full width of the footing i.e., perpendicular to the direction of wall. Nominal distribution reinforcement shall be provided as per cl. 34.5 of IS 456 along the length of the wall to take care of the secondary moment, differential settlement, shrinkage and temperature effects.
(ii) In two-way reinforced square footing slabs, the reinforcement extending in each direction shall be distributed uniformly across the full width/length of the footing.
(iii) In two-way reinforced rectangular footing slabs, the reinforcement in the long direction shall be distributed uniformly across the full width of the footing slab. In the short direction, a central band equal to the width of the footing shall be marked along the length of the footing, where the portion of the reinforcement shall be determined as given in the equation below. This portion of the reinforcement shall be distributed across the central band:

Design Procedure:

Given Data

STEP 1: To find design constant

i) Modular Ratio (m)
$m=\frac{280}{3 \times 6_{\text {cbc }}}$
ii) Neutral Axis depth factor (k)
$k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}$
iii) Lever arm factor (j)
$j=1-\frac{k}{3}$
iv) Moment resisting factor (Q)
$\mathrm{Q}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{jk}$

STEP 2:: To find size of footing
Axial Load = P
Assuming self weight of footing $=10 \%$ of Axial load
Assuming self weight of footing $\mathrm{P}_{1}=\frac{10}{100} \times \mathrm{P}$
Total load $=\mathrm{P}+\mathrm{P}_{1}$
Area of footing $=\mathrm{A}=\frac{\text { Total load }}{S B C}$
STEP 3: To find net upward pressure
Net upward pressure $=q_{0}=\frac{\text { Axial Load }}{A_{\text {provided }}}$
STEP 4: To find bending Moment
The maximum bending moment act at the face of column

$$
\text { Distance }=\frac{L-D}{2}
$$

$M=\frac{\left(q_{0} B\right) x(D i s \tan c e)^{2}}{2}$
STEP 5: Check for depth
Equating maximum BM to resisting moment
$M=Q B d^{2}$
$d=$? (Increse depth upto half of actual for correct check in shear)
Assuming effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Depth of footing $=D_{f}=d+d^{\prime}$
STEP 6: To find area of steel
$\mathrm{M}=\mathrm{T}(\mathrm{jxd})$
$A_{s t}=\frac{M}{6_{s t} j \mathrm{jd}}$
Assuming $\phi=$? mm
Number of bar $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}$
STEP 7: Check for one way shear
The critical section for one way shear at a distance ' d ' from the face of column
Distance $=\left(\frac{L-D}{2}\right)-d$
a) Nominal shear stress $\left(\tau_{v}\right)$

$$
\tau_{v}=\frac{V}{B d}=\frac{q_{0} x \text { Shaded Area }}{B d}
$$

b) Design shear strength of concrete $\left(\tau_{c} k\right)$
$P_{t}=100 \times \frac{A_{s t}}{B d}$ (Page Number 84, Table Number 23, IS 456:2000)
To find design shear strength of concrete $\left(\tau_{c}\right)$
(Page Number 84, Table Number 23, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 2}$
$\mathbf{0 . 3 4 2 7}$	$\boldsymbol{?}$
$\mathbf{0 . 5 0}$	$\mathbf{0 . 3 0}$

$$
\tau_{\mathrm{c}}=?
$$

$\mathbf{k}=1$ (IS 456:2000. P. No:84 C. No: B-5.2.1.1) as $\mathrm{Df}=300 \mathrm{~mm}$
$\tau_{c} k=0.2496 x 1=0.2496 \mathrm{~N} / \mathrm{mm}^{2}$

Compare $\tau_{v} \& \tau_{c} k$
$\tau_{v}<\tau_{c} k$
Safe in one way shear

STEP 8:: Check for two way shear

The critical section for two way shear at a distance ' $\mathrm{d} / 2$ ' from the face of column
a) Nominal shear stress $\left(\tau_{v}\right)$ (IS 456:2000, \mathbf{P} No: $\mathbf{5 7}$, \mathbf{C} No:31.6.2.1)

$$
\tau_{v}=\frac{V}{B_{0} d}=\frac{q_{0} x \text { Shaded Area }}{\text { Perimeter } \mathrm{x} d}
$$

b) Permissible shear stress of concrete ($\tau_{c} k_{s}$) (IS 456:2000. P. No:58 C. No: 31.6.3)
$k_{s}=\left(0.5+B_{c}\right)=0.5+\left[\frac{B}{L}\right]$
and
$\tau_{c}=0.16 \sqrt{F_{c k}}$
Compare $\tau_{v} \& \tau_{c} k_{s}$

$$
\tau_{v}<\tau_{c} k_{s}
$$

Safe in two way shear

STEP 9:: Check for development length
IS 456:2000, P. No. 81, Table No:21 \& IS 456:2000, P. No. 80, C.No No:B-2.1.2
$\mathrm{L}_{\mathrm{d}}=\frac{\phi 6_{\mathrm{s}}}{4 \mathrm{x} \tau_{\text {bd }}}$
Length of bar available $=\frac{1}{2}(B-b)-\operatorname{cov} e r$
Length of bar available $=\mathrm{L}$

$$
=\mathrm{L}>\mathrm{L}_{\mathrm{d}} \quad(\mathrm{Ok})
$$

1) Design an isolated footing of uniform thickness of a R.C. column carrying a load of 500 KN and having size 500 mm X 500 mm . The safe bearing capacity of soil may be takes as $120 \mathrm{KN} / \mathrm{m}^{2}$. Use M_{20} and Fe 415. Use WSM
Solution:
Given Data
Width of column $=b=500 \mathrm{~mm}$
Depth of column $=\mathrm{D}=500 \mathrm{~mm}$
Load $=\mathrm{P}=500 \mathrm{KN}$
Safe bearing capacity of soil $=120 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{M}_{20}, \quad 6 \mathrm{cbc}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe $415,6 \mathrm{st}=230 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)

STEP 1: To find design constant

v) Modular Ratio (m)

$$
m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 7}=13.33
$$

vi) \quad Neutral Axis depth factor (k)

$$
k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{13.33 \times 7}{(13.33 \times 7)+230}=0.2886
$$

vii) Lever arm factor (j)

$$
j=1-\frac{k}{3}=1-\frac{0.2886}{3}=0.9037
$$

viii) Moment resisting factor (Q)

$$
\begin{aligned}
& \mathrm{Q}=\frac{1}{2} \sigma_{\mathrm{cbc}} \mathrm{jk} \\
& \mathrm{Q}=\frac{1}{2} \times 7 \times 0.9037 \times 0.2886=0.9128
\end{aligned}
$$

STEP 2:: To find size of footing
Axial Load = P=500 KN
Assuming self weight of footing $=10 \%$ of Axial load
Assuming self weight of footing $=\frac{10}{100} \times 500=50 \mathrm{KN}$
Total load $=500+50=550 \mathrm{KN}$
Area of footing $=\mathrm{A}=\frac{\text { Total load }}{S B C}=\frac{550}{120}=4.58 \mathrm{~m}^{2}$
The footing is square footing
Each side of footing $=\mathrm{L}=\mathrm{B}$ (Square Column)
$\mathrm{L}=\mathrm{B}=\sqrt{A}=\sqrt{4.58}=2.14 m \cong 2.2 m$
Providing size of footing $=\mathrm{L} \times \mathrm{B}=2.2 \mathrm{~m} \times 2.2 \mathrm{~m}$
STEP 3: To find net upward pressure
Net upward pressure $=q_{0}=\frac{\text { Axial Load }}{A_{\text {provided }}}=\frac{500}{2.2 \times 2.2}=103.305 \mathrm{KN} / \mathrm{m}^{2}$
STEP 4: To find bending Moment
The maximum bending moment act at the face of column

Distance $=\frac{L-D}{2}=\frac{2.2-0.5}{2}=0.85 \mathrm{~m}$
$M=\frac{\left(q_{0} B\right) x 0.85^{2}}{2}=\frac{103.305 \times 2.2 \times 0.85^{2}}{2}=82.101 \mathrm{KNm}$
STEP 5: Check for depth
Equating maximum BM to resisting moment
$M=Q B d^{2}$
$82.10 \times 10^{6}=0.9128 \times 2200 \times d^{2}$
$d=202.19 \mathrm{~mm} \cong 250 \mathrm{~mm}$ (Increse depth upto half of actual for correct check in shear)
Assuming effective cover $=d^{\prime}=50 \mathrm{~mm}$
Depth of footing $=D_{f}=250+50=300 \mathrm{~mm}$

STEP 6:: To find area of steel
$\mathrm{M}=\mathrm{T}(\mathrm{jxd})$
$\mathrm{A}_{\mathrm{st}}=\frac{\mathrm{M}}{6_{\mathrm{st}} \mathrm{jd}}=\frac{82.101 \times 10^{6}}{230 \times 0.9037 \times 250}=1579.99 \mathrm{~mm}^{2}$
Assuming $\phi=10 \mathrm{~mm}$
Number of bar $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1579.99}{(\pi / 4) \times 10^{2}}=20.11 \cong 24$ (Increaes no of bar For safety of one way shear)

STEP 7: Check for one way shear

The critical section for one way shear at a distance 'd' from the face of column

Distance $=\left(\frac{L-D}{2}\right)-d=\frac{2.2-0.5}{2}-0.25=0.60 \mathrm{~m}$
c) Nominal shear stress $\left(\tau_{v}\right)$

$$
\begin{aligned}
& \tau_{v}=\frac{V}{B d}=\frac{q_{0} x \text { Shaded Area }}{B d}=\frac{103.305 x(0.60 \times 2.2)}{2.2 \times 0.25}=247.932 \mathrm{KN} / \mathrm{m}^{2} \\
& \tau_{v}=\frac{247.932 \times 10^{3}}{10^{6}}=0.2479 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

d) Design shear strength of concrete ($\tau_{c} k$)

$$
\begin{aligned}
& P_{t}=100 \times \frac{A_{s t}}{B d}(\text { Page Number 84, Table Number 23, IS 456:2000) } \\
& P_{t}=100 \times \frac{24 \times \frac{\pi}{4} \times 10^{2}}{2200 \times 250}=100 \times \frac{1884.95}{2200 \times 250}=0.3427
\end{aligned}
$$

To find design shear strength of concrete (τ_{c})
(Page Number 84, Table Number 23, IS 456:2000)

Pt \%	τ_{c}
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 2}$
$\mathbf{0 . 3 4 2 7}$	$\boldsymbol{?}$
$\mathbf{0 . 5 0}$	$\mathbf{0 . 3 0}$

$\tau_{\mathrm{c}}=0.22+\left[\frac{(0.30-0.22)}{(0.5-0.25)} \mathrm{X}(0.3427-0.25)\right]=0.2496 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{k}=1$ (IS 456:2000. P. No:84 C. No: B-5.2.1.1) as $D f=300 \mathrm{~mm}$
$\tau_{c} k=0.2496 x \mathrm{l}=0.2496 \mathrm{~N} / \mathrm{mm}^{2}$
Compare $\tau_{v} \& \tau_{c} k$
$\tau_{v}<\tau_{c} k$
$0.2479<0.2496$ (ok)
Safe in one way shear
STEP 8: : Check for two way shear
The critical section for two way shear at a distance ' $\mathrm{d} / 2$ ' from the face of column

Safe in two way shear
STEP 9:: Check for development length
IS 456:2000, P. No. 81, Table No:21 \& IS 456:2000, P. No. 80, C.No No:B-2.1.2
$\mathrm{L}_{\mathrm{d}}=\frac{\phi 6_{\mathrm{s}}}{4 \times \tau_{\text {bd }}}=\frac{10 \times 230}{4 \times 0.8 \times 1.6}=449.22 \mathrm{~mm} \cong 450 \mathrm{~mm}$
Length of bar available $=\frac{1}{2}(B-b)-\operatorname{cov} e r$
Length of bar available $=\frac{1}{2}(2200-500)-50$

$$
=800 \mathrm{~mm}>\mathrm{L}_{\mathrm{d}} \quad(\mathrm{Ok})
$$

2) Design an isolated footing of uniform thickness of a R.C. column carrying a load of 1650 KN and having size 450 mm X 450 mm . The safe bearing capacity of soil may be takes as $250 \mathrm{KN} / \mathrm{m}^{2}$. Use M_{25} and Fe 415. Use WSM
Solution:
Given Data
Width of column $=b=450 \mathrm{~mm}$
Depth of column $=\mathrm{D}=450 \mathrm{~mm}$
Load $=\mathrm{P}=1650 \mathrm{KN}$
Safe bearing capacity of soil $=250 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{M}_{25}, \quad 6 \mathrm{cbc}=8.5 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe 415, 6st $=230$ N/mm ${ }^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find design constant
i) Modular Ratio (m)

$$
m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 8.5}=10.98
$$

ii) Neutral Axis depth factor (k)

$$
k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{10.98 \times 8.5}{(10.98 \times 8.5)+230}=0.2886
$$

iii) Lever arm factor (j)

$$
j=1-\frac{k}{3}=1-\frac{0.2886}{3}=0.9037
$$

iv) Moment resisting factor (Q)

$$
\begin{aligned}
& \mathrm{Q}=\frac{1}{2} 6_{\mathrm{cbc}} \mathrm{jk} \\
& \mathrm{Q}=\frac{1}{2} \times 8.5 \times 0.9037 \times 0.2886=1.1084
\end{aligned}
$$

STEP 2: To find size of footing
Axial Load $=\mathrm{P}=1650 \mathrm{KN}$
Assuming self weight of footing $=10 \%$ of Axial load
Assuming self weight of footing $=\frac{10}{100} \times 1650=165 \mathrm{KN}$
Total load $=1650+165=1815 \mathrm{KN}$
Area of footing $=\mathrm{A}=\frac{\text { Total load }}{S B C}=\frac{1815}{250}=7.26 \mathrm{~m}^{2}$
The footing is square footing
Each side of footing $=\mathrm{L}=\mathrm{B}$
$\mathrm{L}=\mathrm{B}=\sqrt{A}=\sqrt{7.26}=2.69 \mathrm{~m} \cong 2.75 \mathrm{~m}$
Providing size of footing $=L \times B=2.75 \mathrm{~m} \times 2.75 \mathrm{~m}$
STEP 3: To find net upward pressure
Net upward pressure $=q_{0}=\frac{\text { Axial Load }}{A_{\text {provided }}}=\frac{1650}{2.75 \times 2.75}=218.18 \mathrm{KN} / \mathrm{m}^{2}$
STEP 4: To find bending Moment
The maximum bending moment act at the face of column

Distance $=\frac{L-D}{2}=\frac{2.75-0.45}{2}=1.15 \mathrm{~m}$
$M=\frac{\left(q_{0} B\right) x 1.15^{2}}{2}=\frac{218.18 \times 2.75 \times 1.15^{2}}{2}=396.74 \mathrm{KNm}$
STEP 5: Check for depth
Equating maximum BM to resisting moment
$M=Q B d^{2}$
$396.74 \times 10^{6}=1.1084 \times 2750 \times d^{2}$
$d=360.77 \mathrm{~mm} \cong 600 \mathrm{~mm}$ (Increse depth upto half of actual for correct check in shear)
Assuming effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Depth of footing $=D_{f}=600+50=650 \mathrm{~mm}$

STEP 6: To find area of steel
$\mathrm{M}=\mathrm{T}(\mathrm{jxd})$
$\mathrm{A}_{\mathrm{st}}=\frac{\mathrm{M}}{6_{\mathrm{st}} \mathrm{jd}}=\frac{396.74 \times 10^{6}}{230 \times 0.9037 \mathrm{x} 600}=3181.28 \mathrm{~mm}^{2}$
Assuming $\phi=16 \mathrm{~mm}$
Number of bar $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{3181.28}{(\pi / 4) \times 16^{2}}=15.88 \cong 16$
STEP 7: Check for one way shear
The critical section for one way shear at a distance ' d ' from the face of column

Distance $=\left(\frac{L-D}{2}\right)-d=\frac{2.75-0.45}{2}-0.6=0.4 m$
a) Nominal shear stress $\left(\tau_{v}\right)$

$$
\begin{aligned}
& \tau_{v}=\frac{V}{B d}=\frac{q_{0} x \text { Shaded Area }}{B d}=\frac{218.18 x(0.4 \times 2.75)}{2.75 \times 0.6}=145.45 \mathrm{KN} / \mathrm{m}^{2} \\
& \tau_{v}=\frac{145.45 \times 10^{3}}{10^{6}}=0.1454 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

b) Design shear strength of concrete ($\tau_{c} k$)
$P_{t}=100 \times \frac{A_{s t}}{B d}$ (Page Number 84, Table Number 23, IS 456:2000)
$P_{t}=100 \times \frac{16 \times \frac{\pi}{4} \times 16^{2}}{2750 \times 600}=100 \times \frac{3216.99}{2750 \times 600}=0.1949$
To find design shear strength of concrete (τ_{c})
(Page Number 84, Table Number 23, IS 456:2000)

Pt \%	τ_{c}
$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 9}$
$\mathbf{0 . 1 9 4 9}$	$\boldsymbol{?}$
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 3}$

$$
\begin{aligned}
& \tau_{\mathrm{c}}=0.19+\left[\frac{(0.23-0.19)}{(0.25-0.15)} \mathrm{X}(0.1949-0.15)\right]=0.2079 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathbf{k}=\mathbf{1} \text { (IS 456:2000. P. No:84 C. No: B-5.2.1.1) }
\end{aligned}
$$

$\tau_{c} k=0.2079 x 1=0.2079 \mathrm{~N} / \mathrm{mm}^{2}$

Compare $\tau_{v} \& \tau_{c} k$
$\tau_{v}<\tau_{c} k$
$0.1454<0.2079$ (ok)
Safe in one way shear
STEP 8: Check for two way shear
The critical section for two way shear at a distance ' $\mathrm{d} / 2$ ' from the face of column

a) Nominal shear stress $\left(\tau_{v}\right)$ (IS 456:2000, P No: $\mathbf{5 7}$, C No:31.6.2.1)
$\tau_{v}=\frac{V}{B_{0} d}=\frac{q_{0} x \text { Shaded Area }}{\text { Perimeter } \mathrm{x} d}=\frac{218.18 x\left[(2.75)^{2}-(1.05)^{2}\right]}{4 \times 1.05 \times 0.6}=559.30 \mathrm{KN} / \mathrm{m}^{2}$
$\tau_{v}=\frac{559.30 \times 10^{3}}{10^{6}}=0.5593 \mathrm{~N} / \mathrm{mm}^{2}$
b) Permissible shear stress of concrete $\left(\tau_{c} k_{s}\right)$ (IS 456:2000. P. No:58 C. No: 31.6.3)

$$
k_{s}=\left(0.5+B_{c}\right)=0.5+\left[\frac{450}{450}\right]=1.5>1
$$

Hence $k_{s}=1$
and
$\tau_{c}=0.16 \sqrt{F_{c k}}=0.16 \sqrt{25}=0.8 \mathrm{~N} / \mathrm{mm}^{2}$

Compare $\tau_{v} \& \tau_{c} k_{s}$
$\tau_{v}<\tau_{c} k_{s}$
$0.5593<0.8$ (ok)
Safe in two way shear
STEP 9: Check for development length
IS 456:2000, P. No. 81, Table No:21 \& IS 456:2000, P. No. 80, C.No No:B-2.1.2

$$
\mathrm{L}_{\mathrm{d}}=\frac{\phi 6_{\mathrm{s}}}{4 \times \tau_{\mathrm{bd}}}=\frac{16 \times 230}{4 \times 0.9 \times 1.6}=638.88 \mathrm{~mm} \cong 640 \mathrm{~mm}
$$

Length of bar available $=\frac{1}{2}(B-b)-\operatorname{cov} e r$
Length of bar available $=\frac{1}{2}(2750-450)-50$

$$
=1100 \mathrm{~mm}>\mathrm{L}_{\mathrm{d}} \quad(\mathrm{Ok})
$$

3) Design rectangular isolated footing of uniform thickness of a R.C. column carrying a load of 750 KN and having size 400 mm X 600 mm . The safe bearing capacity of soil may be takes as $150 \mathrm{KN} / \mathrm{m}^{2}$. Use M_{20} and Fe 415 . Use WSM Solution:
Given Data
Width of column $=b=400 \mathrm{~mm}$
Depth of column $=\mathrm{D}=600 \mathrm{~mm}$
Load $=\mathrm{P}=750 \mathrm{KN}$

Safe bearing capacity of soil $=150 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{M}_{20}, \quad 6 \mathrm{cbc}=7 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 21, P No:81)
Fe $415,6 \mathrm{st}=230 \mathrm{~N} / \mathrm{mm}^{2}$ (IS 456:2000, Table No: 22, P No:82)
STEP 1: To find design constant
i) Modular Ratio (m)

$$
m=\frac{280}{3 \times 6_{\mathrm{cbc}}}=\frac{280}{3 \times 7}=13.33
$$

ii) \quad Neutral Axis depth factor (k)

$$
k=\frac{m 6_{c b c}}{m 6_{c b c}+6_{s t}}=\frac{13.33 \times 7}{(13.33 \times 7)+230}=0.2886
$$

iii) Lever arm factor (j)
$j=1-\frac{k}{3}=1-\frac{0.2886}{3}=0.9037$
iv) Moment resisting factor (Q)
$\mathrm{Q}=\frac{1}{2} 6_{\mathrm{cbj}} \mathrm{jk}$
$\mathrm{Q}=\frac{1}{2} \times 7 \times 0.9037 \times 0.2886=0.9128$
STEP 2: To find size of footing
Axial Load = P=750 KN
Assuming self weight of footing $=10 \%$ of Axial load
Assuming self weight of footing $=\frac{10}{100} \times 750=75 \mathrm{KN}$
Total load $=750+75=825 \mathrm{KN}$
Area of footing $=\mathrm{A}=\frac{\text { Total load }}{S B C}=\frac{825}{150}=5.5 \mathrm{~m}^{2}$
For rectangular footing

$$
\begin{aligned}
& \frac{L_{f}}{B_{f}}=\frac{L}{B} \\
& \frac{L_{f}}{B_{f}}=\frac{600}{400} \\
& L_{f}=\frac{600}{400} B_{f} \\
& L_{f}=1.5 B_{f}
\end{aligned}
$$

Area of footing $=L_{f} \times B_{f}=A$
$1.5 \mathrm{~B}_{\mathrm{f}} \mathrm{X} \mathrm{B}_{\mathrm{f}}=\mathrm{A}$
$1.5 \mathrm{~B}_{\mathrm{f}}^{2}=\mathrm{A}=5.5$
$\mathrm{B}_{\mathrm{f}}=1.91 \mathrm{~m} \cong 2 \mathrm{~m}$
$\mathrm{L}_{\mathrm{f}}=1.5 \mathrm{~B}_{\mathrm{f}}=1.5 \times 2=3 \mathrm{~m}$

Providing size of footing $=L_{f} \times B_{f}=3 \mathrm{~m} \times 2 \mathrm{~m}$
STEP 3: To find net upward pressure
Net upward pressure $=q_{0}=\frac{\text { Axial } \text { Load }}{A_{\text {provided }}}=\frac{750}{3 \times 2}=125 \mathrm{KN} / \mathrm{m}^{2}$
STEP 4: To find bending Moment
The maximum bending moment act at the face of column

Distance $=\frac{L-D}{2}=\frac{3-0.6}{2}=1.2 \mathrm{~m}$

$$
M=\frac{\left(q_{0} B\right) x 1.2^{2}}{2}=\frac{125 \times 2 \times 1.2^{2}}{2}=180 \mathrm{KNm}
$$

STEP 5: Check for depth
Equating maximum BM to resisting moment

$$
M=Q B d^{2}
$$

$$
180 \times 10^{6}=0.9128 \times 2000 x d^{2}
$$

$d=314 \mathrm{~mm} \cong 500 \mathrm{~mm}$ (Increse depth upto half of actual for correct check in shear)
Assuming effective cover $=d^{\prime}=50 \mathrm{~mm}$
Depth of footing $=\mathrm{D}_{\mathrm{f}}=500+50=550 \mathrm{~mm}$
Distance $=\frac{B-b}{2}=\frac{2-0.4}{2}=0.8 \mathrm{~m}$
$M=\frac{\left(q_{0} L\right) x 0.8^{2}}{2}=\frac{125 \times 3 \times 0.8^{2}}{2}=120 \mathrm{KNm}$
$180 \mathrm{KNm}<120 \mathrm{KNm}$ (The effective depth found above has to be checked for shear)

STEP 6: To find area of steel
Along X-X
$\mathrm{M}=\mathrm{T}(\mathrm{jxd})$
$A_{\text {st }}=\frac{M}{6_{\text {st }} \mathrm{jd}}=\frac{180 \times 10^{6}}{230 \times 0.9037 \times 500}=1732.00 \mathrm{~mm}^{2}$
Assuming $\phi=10 \mathrm{~mm}$
Number of bar $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1732}{(\pi / 4) \times 10^{2}}=22.05 \cong 23$
Along Y-Y
$\mathrm{M}=\mathrm{T}(\mathrm{j}-\mathrm{d})$
$A_{\text {st }}=\frac{M}{6_{\text {st }} \mathrm{jd}}=\frac{120 \times 10^{6}}{230 \times 0.9037 \times 500}=1154.67 \mathrm{~mm}^{2}$
Assuming $\phi=10 \mathrm{~mm}$
Number of bar $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1154.67}{(\pi / 4) \times 10^{2}}=14.70 \cong 15$
STEP 7: Check for one way shear
The critical section for one way shear at a distance ' d ' from the face of column

Distance $=\left(\frac{L-D}{2}\right)-d=\frac{3-0.6}{2}-0.5=0.7 m$
a) Nominal shear stress $\left(\tau_{v}\right)$

$$
\begin{aligned}
& \tau_{v}=\frac{V}{B d}=\frac{q_{0} \times \text { Shaded Area }}{B d}=\frac{125 \times(0.7 \times 2.0)}{2 x 0.5}=175 \mathrm{KN} / \mathrm{m}^{2} \\
& \tau_{v}=\frac{175 \times 10^{3}}{10^{6}}=0.175 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

b) Design shear strength of concrete $\left(\tau_{c} k\right)$

$$
\begin{aligned}
& P_{t}=100 \times \frac{A_{s t}}{B d}(\text { Page Number 84, Table Number 23, IS 456:2000) } \\
& P_{t}=100 \times \frac{23 \times \frac{\pi}{4} \times 10^{2}}{2000 \times 500}=100 \times \frac{1806.41}{2000 \times 500}=0.1806
\end{aligned}
$$

To find design shear strength of concrete (τ_{c})
(Page Number 84, Table Number 23, IS 456:2000)

Pt \%	τ_{c}
$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 8}$
$\mathbf{0 . 1 8 0 6}$	$\boldsymbol{?}$
$\mathbf{0 . 2 5}$	$\mathbf{0 . 2 2}$

$$
\tau_{\mathrm{c}}=0.15+\left[\frac{(0.22-0.15)}{(0.25-0.15)} \mathrm{X}(0.1806-0.15)\right]=0.19224 \mathrm{~N} / \mathrm{mm}^{2}
$$

k=1 (IS 456:2000. P. No:84 C. No: B-5.2.1.1)
$\tau_{c} k=0.19224 x \mathrm{l}=0.19224 \mathrm{~N} / \mathrm{mm}^{2}$

Compare $\tau_{v} \& \tau_{c} k$
$\tau_{v}<\tau_{c} k$
$0.175<0.19224$ (ok)
Safe in one way shear
STEP 8: Check for two way shear
The critical section for two way shear at a distance ' $\mathrm{d} / 2$ ' from the face of column

a) Nominal shear stress $\left(\tau_{v}\right)$ (IS 456:2000, P No: $\mathbf{5 7}$, \mathbf{C} No:31.6.2.1)

$$
\begin{aligned}
& \tau_{v}=\frac{V}{B_{0} d}=\frac{q_{0} x \text { Shaded Area }}{\text { Perimeter } \mathrm{x} d}=\frac{125 x[(3 x 2)-(1.1 x 0.9)]}{[(2 x 1.1)+(2 x 0.9)] x 0.5}=312.625 \mathrm{KN} / \mathrm{m}^{2} \\
& \tau_{v}=\frac{312.625 \times 10^{3}}{10^{6}}=0.3126 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

b) Permissible shear stress of concrete $\left(\tau_{c} k_{s}\right)$ (IS 456:2000. P. No:58 C. No: 31.6.3)

$$
k_{s}=\left(0.5+B_{c}\right)=0.5+\left[\frac{400}{600}\right]=1.1666>1
$$

Hence $k_{s}=1$
and
$\tau_{c}=0.16 \sqrt{F_{c k}}=0.16 \sqrt{20}=0.72 \mathrm{~N} / \mathrm{mm}^{2}$
Compare $\tau_{v} \& \tau_{c} k_{s}$
$\tau_{v}<\tau_{c} k_{s}$
$0.3126<0.72$ (ok)
Safe in two way shear
STEP 9: Check for development length
IS 456:2000, P. No. 81, Table No:21 \& IS 456:2000, P. No. 80, C.No No:B-2.1.2

$$
\mathrm{L}_{\mathrm{d}}=\frac{\phi 6_{\mathrm{s}}}{4 \times \tau_{\mathrm{bd}}}=\frac{10 \times 230}{4 \times 0.8 \times 1.6}=449.21 \mathrm{~mm} \cong 450 \mathrm{~mm}
$$

Length of bar available $=\frac{1}{2}(B-b)-\operatorname{cov} e r$
Length of bar available $=\frac{1}{2}(2000-400)-50$

$$
=750 \mathrm{~mm}>\mathrm{L}_{\mathrm{d}} \quad(\mathrm{Ok})
$$

Introduction

Limit State Approach

The disparity between the behaviour predicted by elastic analysis and that observed in practise has led to the use of a theory based on the conditions present in an actual structure at various stages of loading for reinforced concrete design.

To be more specific, the Limit State Method of R. C. Structure Design is based on limiting the state of the system.

The deflection and cracking in the functioning state (loads); (ii) stresses and strains in the failure or "collapse" condition (loads). Aside from the limiting states listed above, a few structures that perform unique duties should adhere to the limit states that apply to them.

Objectives:

You will be able to apply the basic ideas involved in the analysis and design of R. C. Structures using the Limit State Method after completing this unit. As a result, the following are the unit's goals:

1) Enumeration of various 'Limit States' considered while designing R. C. Structures,
2) Determination of Design Values of stresses in concrete as well as in steel,
3) Determination of Design Values of Loads at Collapse and at Serviceability Limit States,
4) Determination of Permissible Deflection of Service State (Loads),
5) Determination of Permissible width of Cracks in concrete at Service State (Loads), and Method of Analysis of Structures and their Components.

LIMIT STATE METHOD :- The limit state design originated form the ultimate design. The object of design based on limit state concept , the structure will not become unserviceable in its life times. The important limit state which must be examine for the design of structure are
a) Limit State of collapse
b) Limit State of serviceability
c) Limit State of durability
a) LIMIT STATE OF COLLAPSE :- IS 456 On page number 67 and clause number: 35.2
The limit state of collapse is reach when the structure as a whole or part of structure collapse. The collapse may be of one or more member.

There are following types of limit state
A) Flexure
B) Shear
C) Compression
D) Torsion
b) LIMIT STATE OF SERVICIABILITY :- IS 456 On page number 67 and clause number: 35.3
This limit relates the performance or behavior of structure and based on the causes affecting serviceability of structure and limit state of serviceability having following type

1) Limit State of Deflection
2) Limit State of Cracking
3) Limit State of Vibration
4) Limit State of Deflection :- IS 456 On page number 67 and clause number: 35.3.1

The excessive deflection causes numbers of problems expanding the appearance of structure. The feeling lack of safety. The actual deflection should be less than permissible deflection.
2) Limit State of Cracking :- IS 456 On page number 67 and clause number: 35.3.2

The excessive cracking is spoil the appearance of structure. It create leakage problem and corrosion of steel. The maximum permissible crack should taken as IS code.
3) Limit State of Vibration :- The vibration reduce the life of structure and should be given in IS code.
c) Limit State of durability :- It is related the durability of structure against the action and forces of nature like rainwater.

Example:- fire, chemical action etc
FACTOR OF SAFETY :- (' Υ)
The factor of safety which gives the margined at strength for safety can be define as the ratio of strength of member to the force acting on the member. It is denoted by ' $\boldsymbol{\Upsilon}$.

$$
\Upsilon=\mathbf{R} / \mathbf{F}
$$

Where,
R = Strength Of Member
$\mathrm{F}=$ Force acting on the member

PARTIAL SAFETY FACTOR:- (${ }^{\prime} \mathbf{\Upsilon}_{\mathbf{m}}$) IS 456 On page number 68 and clause number: 36.4
It is the strength reduction factor and it is the ratio of characteristics strength to design strength. It is denoted by ${ }^{\prime} \mathbf{\Upsilon}_{\mathrm{m}}$.

$$
\Upsilon_{\mathrm{m}}=\mathbf{F}_{\mathbf{C K}} / \mathbf{F}_{\mathrm{d}}
$$

Where,
$\mathrm{F}_{\mathrm{CK}}=$ Grade or characteristics strength
$F_{d}=$ Partial safety factor for material
$\mathbf{Y}_{\mathbf{m}}$ depend upon type of material
For limit state of collapse
for concrete ${ }^{\prime} \mathbf{~}_{\mathrm{m}}=1.5$
for steel ${ }^{\prime} \mathbf{\Upsilon}_{\mathbf{m}}=1.15$
PARTIAL SAFETY FACTOR FOR LOADS :- IS 456 On page number 68 and clause number: 36.4 It is the ratio design load to the characteristics load. It is denoted by ${ }^{\prime} \mathbf{\Upsilon}_{\mathrm{m}}$.

$$
\mathbf{Y}_{\mathrm{m}}=\mathbf{F}_{\mathrm{d}} / \mathbf{F}
$$

Where,
$\mathrm{F}=$ Characteristics load
$\mathrm{F}_{\mathrm{d}}=$ Partial safety factor for material

CHARACTERISTICS STRENGTH :- Characteristics strength of material is that value of material whose strength not more than 5% of result are expected to fall below. It means the characteristics strength has 95% accuracy.

Where,
$\mathrm{F}_{\mathrm{CK}}=$ Characteristics strength
$\mathrm{F}_{\mathrm{m}}=$ Mean strength
$\mathrm{F}_{m}=\frac{\sum \mathrm{F}}{n}$
Where,
$\mathrm{n}=$ Number of observations
$S=$ Standard deviation
$S=\sqrt{\frac{\sum \Delta^{2}}{n-1}}$
$\Delta=\mathrm{F}-\mathrm{F}_{\mathrm{m}}$
$\mathrm{F}_{\mathrm{CK}}=\mathrm{F}_{\mathrm{m}}-1.64 \mathrm{~S}$

NUMERICALS

1. Find the Characteristics of concrete from test are given below
$28.7,30.4,31.7,29.3,28.5,29.2,30.3,32.5,31.5,34.3,32.8,33.8,34.7,32.9,33.8,32.7,30.9,32.6,33.4$, 32.2

Solution:- $\mathrm{F}_{\mathrm{m}}=$ Mean strength

$$
\mathrm{F}_{m}=\frac{\sum \mathrm{F}}{n}
$$

$$
\mathrm{F}_{\mathrm{m}}=636.1 / 20=31.805
$$

$$
\mathrm{n}=20
$$

Sr No	F	$\Delta=\mathrm{F}-\mathrm{F}_{\mathrm{m}}$	Δ^{2}
1	28.7	$28.7-31.805=-3.106$	9.641
2	30.4	$30.4-31.805=-1.405$	1.970
3	31.7	$31.7-31.805=-0.105$	0.0110
4	29.3	$29.3-31.805=-2.505$	6.275
5	28.5	$28.5-31.805=-3.305$	10.923
6	29.5	$29.5-31.805=-2.605$	6.786
7	30.3	$30.3-31.805=-1.505$	2.265
8	32.5	$32.5-31.805=0.695$	0.483
9	31.5	$31.5-31.805=-0.305$	0.0930
10	34.3	$34.3-31.805=2.495$	6.220
11	32.8	$32.8-31.805=-0.995$	0.990
12	33.8	$33.8-31.805=1.995$	3.98
13	34.7	$34.7-31.805=2.895$	8.380
14	32.9	$32.9-31.805=1.095$	1.199
15	33.8	$33.8-31.805=1.995$	3.980
16	32.7	$32.7-31.805=0.895$	0.801
17	30.9	$30.9-31.805=-0.905$	0.819
18	32.6	$32.6-31.805=0.795$	0.632
19	33.4	$33.4-31.805=1.595$	2.542
20	32.2	$32.2-31.805=0.395$	0.156
		$=68.106$	

$S=$ Standard deviation
$S=\sqrt{\frac{\sum \Delta^{2}}{n-1}}=\sqrt{\frac{68.108}{20-1}}$
$\mathrm{S}=1.893$
$\mathrm{F}_{\mathrm{CK}}=\mathrm{F}_{\mathrm{m}}-1.64 \mathrm{~S}$
$\mathrm{F}_{\mathrm{CK}}=31.805-1.64 \mathrm{X} 1.893=28.70 \mathrm{~N} / \mathrm{mm}^{2}$
2. Find the Characteristics of steel from test are given below
$438,502,651,369,242,578,195,450,471,495,510,575,391,427,580,622,468,543,493,400$
Solution:- $\mathrm{F}_{\mathrm{m}}=$ Mean strength

$$
\mathrm{F}_{m}=\frac{\sum \mathrm{F}}{n}
$$

$$
\mathrm{F}_{\mathrm{m}}=9400 / 20=470
$$

$\mathrm{n}=20$

Sr No	F	$\Delta=\mathrm{F}-\mathrm{F}_{\mathrm{m}}$	Δ^{2}
1	438	$438-470=-32$	1024
2	502	$502-470=32$	1024
3	651	$651-470=181$	32761
4	369	$369-470=-101$	10201
5	242	$242-470=-228$	51984
6	578	$578-470=108$	11664
7	195	$195-470=-275$	75625
8	450	$450-470=-20$	400
9	471	$471-470=1$	1
10	495	$495-470=25$	625
11	510	$510-470=40$	1600
12	575	$575-470=105$	11025
13	391	$391-470=-79$	6241
14	427	$427-470=-43$	1849
15	580	$580-470=110$	12100
16	622	$622-470=151$	23104
17	468	$468-470=-2$	4
18	543	$543-470=73$	5329
19	493	$493-470=23$	529
20	400	$400-470=-70$	4900

$S=$ Standard deviation
$S=\sqrt{\frac{\sum \Delta^{2}}{n-1}}=\sqrt{\frac{251990}{20-1}}$
$S=115.16$
$\mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{m}}-1.64 \mathrm{~S}$
$\mathrm{F}_{\mathrm{y}}=470-1.64 \mathrm{X} 115.16=281.14 \mathrm{~N} / \mathrm{mm}^{2}$

STRUCTURAL ELEMENTS :- Following are structural elements used in any type of building.

1) Slab
2) Beam
3) Column
4) Footing
5) Slab :- A slab is two dimensitional structural elements having very small thickness compare to its length and width . It used to provided the covering the building. The slab carrying distributed load by flexure. A slab may be supported by beam and wall.

There are two types of slab
a) One Way Slab
b) Two Way Slab

Classification of Slab

i) According to shape
ii) According to spanning direction
iii) According to support
iv) According to uses
v) According to practical design
2) BEAM :- Beam are member that are subjected to bending. Bending causes compressive as well as tensile strength in the same cross section depending upon the position of practice and type of end support.

In simply supported beam, top half of cross section is under compression and the bottom half under tension.
3) COLUMN :- Column are vertical compression member used to transfer loads of the structure such as buildings, factory, cinema balcony, auditorium halls, flow of frame building etc to the foundation below.

TYPES OF COLUMN:-

i) Column with longitudinal steel and with lateral ties or spirals
ii) Composite columns with rolled steel specimen induced in concrete
iii) Concrete filled steel tabular column.
column may of any shape like rectangular, circular, hexagonal etc
4) FOOTING :- Footing is that part of building whose function is to distribute the load of the structure to the soil supporting the structure. The foundation distribute the load over a larger area at o uniform rate so that the pressure on the soil does not exceed. Its allowable bearing capacity, foundation increases the stability of structure.

TYPES OF FOOTING:-
i) Spread Footing
ii) Combined Footing
iii) Eccentrically Loaded Footing
iv) Raft or Mat Foundation
v) Pile Foundation

LOADS ON STRUCTURE :- IS 456 On page number 32,33 and clause number: 19
Following load which are acting in any type of construction

1) Dead Load
2) Live Load
3) Wind Load
4) Impact Load
5) Earthquake Load
6) Dead Load :- Dead load are permanent and stationary load which are transferred to the structure thought there their life span. Dead load is primaralily due to self weight of structural member. Permanent partition wall fixed permanent equipment and weight of different material. The dead load of material are given in IS 875-PART -I.
7) Live Load :- Live load are either moveable or moving load without any impact. These are assumed to be produced by the intended use or occupancy of the building including weight of movable portion. The live load of material are given in IS 875-PART -II.
8) Wind Load :- Wind load basically horizontal load causes by movement of air. Wind load is required to be consider in the design specially when the height of building exceeds the two times of dimensions transferred to expose surface. The wind load of material are given in IS 875-PART -III.
9) Impact Load :- Imposed load caused by vibrator or impact or acceleration of person walking, produce live load but soldiers marching or frame supporting lifts produced impact load. Thus impact load is equal to imposed load incremental by some percentage depending on the intensity of impact.
10) Earthquake Load :- Earthquake load are horizontal load caused by earthquake and shall be calculated in accordance with IS 1983.

STRUCTURAL PROPERTIES OF CONCRETE:- IS 456 On page number 15,16,17,18,28,29
Following are structural properties of concrete

1) Grade Of Concrete
2) Compressive Strength
3) Tensile Strength
4) Creep
5) Shrinkage
6) Short Term Modulus Of Elasticity
7) Long Term Modulus Of Elasticity
8) Modular Ratio
9) Poissions Ratio
10) Durability
11) Unit Weight Of Concrete
12) Stress-Strain Curve
13) Grade Of Concrete :- Concrete is known by its grade which is design as $\mathrm{M}_{20}, \mathrm{M}_{25}, \mathrm{M}_{30}$ etc in which M stand concrete mix and number 20,25,30 etc denotes specified compressive strength of 150 mm size cube expressed in $\mathrm{N} / \mathrm{mm}^{2}$.
14) Compressive Strength :- Like load, the strength of concrete is also quantity which varies considerably for some concrete mix, therefore a single representative value known as characteristics strength, is arrived at using statistical probabilistic principles.
15) Tensile Strength :- The estimate of flexural tensile strength or the modulus of rupture or the cracking strength of concrete from cube compressive strength is obtained from the relation
$\mathrm{F}_{\mathrm{cr}}=0.7 \mathrm{X} \sqrt{ } \mathrm{F}_{\mathrm{ck}}$ in $\mathrm{N} / \mathrm{mm}^{2}$
16) Creep :- Plastic deformation under sustained load is called creep.
17) Shrinkage:- The property of diminishing in volume during the process of drying and hardening is called shrinkage.
18) Short Term Modulus Of Elasticity :- According to code ,short term modulus of elasticity of concrete is given by
$\mathrm{E}_{\mathrm{c}}=5000 \mathrm{X} \sqrt{ } \mathrm{F}_{\mathrm{ck}}$ in $\mathrm{N} / \mathrm{mm}^{2}$
19) Long Term Modulus Of Elasticity:- The long term modulus of elasticity of concrete takes into account the effect of creep and shrinkage.
20) Modular Ratio:- It is the ratio of modulus of elasticity of steel to modulus of elasticity of concrete.

Modular ration $\mathrm{m}=\mathrm{E}_{s} / \mathrm{E}_{\mathrm{c}}$
9) Poissions Ratio:- Poissons ratio varies between 0.1 for high strength concrete and 0.2 for weak mixes. It is normally taken 0.15 for strength design and 0.2 for serviceability criteria.
10) Durability:- Durability of concrete is its ability to resist its disintegration and decay.
11) Unit Weight Of Concrete: - The unit weight of reinforced concrete depends on percentage of reinforcement, type of aggregates, amount of voids and varies from $23 \mathrm{KN} / \mathrm{m}^{3}$ to $26 \mathrm{KN} / \mathrm{m}^{3}$. The unit weight of plain and reinforced concrete, as specified by IS:456 are $24 \mathrm{KN} / \mathrm{m}^{3}$ and $25 \mathrm{KN} / \mathrm{m}^{3}$ respectively.
12) Stress-Strain Curve:- The typical idealized stress- strained curved adopted by IS code is shown in Figure.

Fig. 21 Stress-Strain Curve for Concrete

REDISRTUBUTION OF MOMENT AND IS CODE PROVISIONS:- IS 456 On page number 68 and clause number: 37.1.1

The feature of limit state design for collapse is the distribution of moment in statically indeterminate beam. The redistribution of moment causes the rotation of plastic hinges in proportion to amount of redistribution and therefore it demand that a section should posses that much rotation capacity but R.C. member the rotation capacity is required to be limited serviceability consideration.

IS CODE PROVISIONS FOR REDISRTUBUTION OF MOMENT:- IS 456 On page number 68 and clause number: 37.1.1
a) Equilibirum between the interal forces and the external loads is maintained.
b) The ultimate moment of resistance provided at any section of a member is not less than 70 percent of the moment at that section obtained from an elastic maximum moment diagram covering all appropriate combinations of loads.
c) The elastic moment at any section in a member due to a particular combination of loads shall not be reduced by more than 30 percent of the numerically largest moment given anywhere by the elastic maximum moments diagram for the particular member, covering all appropriate combination of loads.
d) At sections where the moment capacity after redistribution is less than that from the elastic maximum moment diagram, the following relationship shall be satisfied:
$(\mathrm{Xu} / \mathrm{d})+(\delta \mathrm{M} / 100) \leq 0.6$
where
$\mathrm{Xu}=$ depth of neutral axis, $\mathrm{d}=$ effective depth, and $\delta \mathrm{M}=$ percentage reduction in moment.
e) In structures in which the structural frame provides the lateral stability, the reductions in moment allowed shall be restricted to 10 percent for structures over 4 storeys in height.

SIGNIFICANCE OF DELFECTION:- Deflection form one of the important criteria of accepting the performance a structure under service load. The time dependant factor like creep and shrinkage further increases in deflection under sustained load. This may result in excessive deflection which may not be detrimental to the safety of structure but may considerbly the serviceability or utility of structure and also the load distribution among the interconnected member.

TYPES OF DELFECTION:- IS 456 On page number 88
a) Short term deflection
b) Long term deflection
c) Total deflection
a) Short term deflection :- It is due to initial elastic deformation of the member due to load and permanent imposed load under service condition.
b) Long term deflection :- It is caused due to creep and shrinkage under sustained load and additional short term deflection due to temporary live load.
c) Total deflection :- Total deflection includes short term deflecting and long term deflection this quantity required overall control.

IS CODE PROVISIONS FOR DEFLECTION:- IS 456 On page number 37 and clause number 23.2
a) The final deflection due to all loads including the effects of temperature, creep and shrinkage and measured from the as-cast level of the, supports of floors, roofs and all other horizontal members, should not normally exceed span/250.
b) The deflection including the effects of temperature, creep and shrinkage occurring after erection of partitions and the application of finishes should not normally exceed span/350 or 20 mm whichever is less.

CRACKING:- Cracking is an important phenomenon special R.C. members. Study of behavior of R.C members can not be complete without study of cracking. Micro cracks occur in R.C member even before the applications of loads due to environmental effect of temperature and dryness by a way of thermal strength and shrinkage.

CAUSES OF CRACKING:-

1. Creep
2. Change in moisture
3. Elastic deformation
4. Foundation Settlement
5. Shrinkage
6. Thermal variation
7. Vegetation growth
8. Corrosion of reinforcement
9. Volumetric change
10. Stress concentration due to curtailment and splicing of bar
11. Direct stress and flexural stress due to bending and shear
12. Different moment of support

MECHANICS OF CRACKING:- Visible cracking is generated initiated internal micro cracks due to volumetric change or flexural micro cracks. The micro cracks are surface crack which are not visible expect by close examination one micro cracks have form, a sight increase in the external forces causes these cracks to open up suddenly to measurable width.

EFFECT OF CRACKIMG:-

1. It mark the appearance of exposed surface.
2. It create lot of maintenance problems.
3. It deduce stiffness of the member, hence increases deflection.
4. It create feeling of lack of safety.
5. It reduce the imperviousness creating leakage problem in roof, tank, walls etc.
6. It lead to corrosion of steel and hence reduction in strength and durability of structure.

CLASSIFICATION AND TYPE OF CRACKS:-

Cracks in R.C are classified into two main categories

1. Crack due to external forces and resulting structural action and deformation :- flexural cracking due to bending included cracks due to shear and torsion, normal cracks due to direct tension.
2. Cracks which are independent of load and which are caused due to restrained drying shrinkage of temperature expansion are normally exposed surfaces.

BAR DETAILING RULES:- The rule for bar detailing are form to satisfy the serviceability requirement for cracking to meet the requirement of durability of normal structure.

They includes rule regarding

1. Cover to reinforcement
2. Reinforcement requirement
3. Spacing of reinforcement

Limit State For shear

To avoid the tension cracks developed along bottom of beam. We provide longitudinal reinforcement or main beam reinforcement along the length of beam. The main reinforcement will act against tension crack along the bottom edge of the beam.

A longitudinal cracks are developed at 45^{0} with horizontal along the length of beam. The tension created by diagonal cracks is known as diagonal tension. To avoid this tension, we provide the reinforcement is known as shear reinforcement.

(a) Longitudinial section for tested beams

Shear failure of beam without shear reinforcement

1. Diagonal tension failure

This type of failure occurs when magnitude of shear force is large as compared to bending moment i.e near the support.

2. Flexural Shear failure

This type of failure will occur when bending moment is larger than shear force.

3. Diagonal compression failure

This type of failure takes place under the load by crushing of concrete as diagonal cracks are developed.

Shear reinforcement as per IS 456:2000
a) Nominal Shear Stress (Page Number: 72, IS 456:2000)

$$
\begin{aligned}
& \tau_{v}=\frac{V_{u}}{b d} \\
& \tau_{v}=\text { Nominal Shear Reinforcement } \\
& V_{u}=\text { Shear force due to design load } \\
& \mathrm{b}=\text { Breadth of the section for T section } \\
& \mathrm{b}=\mathrm{b}_{\mathrm{w}} \\
& \mathrm{~d}=\text { Effective depth }
\end{aligned}
$$

b) Shear taken by concrete

The design strength of concrete varies with the percentage of steel, different grade of concrete and denoted by τ_{c}. It is shear stress of concrete τ_{c}
Percentage of steel Pt
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=$ Percentage of steel

$\mathbf{P t} \%$	τ_{c}
$\mathbf{0 . 7 5}$	$\mathbf{0 . 5 6}$
$\mathbf{0 . 7 5 2 7}$	$\boldsymbol{?}$
$\mathbf{1 . 0 0}$	$\mathbf{0 . 6 2}$

$$
\tau_{\mathrm{c}}=0.56+\left[\frac{(0.62-0.56)}{(1-0.75)} \mathrm{X}(0.7527-0.75)\right]=0.5606 \mathrm{~N} / \mathrm{mm}^{2}
$$

c) The maximum shear stress

The nominal shear strength in concrete should not be greater than maximum shear stress from Table Number 20, page number 73. IS 456:2000

Table 20 Maximum Shear Stress, $\tau_{\mathrm{e} \text { max }}, \mathbf{N} / \mathrm{mm}^{2}$
(Clauses 40.2.3, 40.2.3.1, 40.5.1 and 41.3.1)

Concrete Grade	M 15	M 20	M 25	M 30	M 35	M 40 and above
$\tau_{c \text { max }}, ~ N / \mathrm{mm}^{2}$	2.5	2.8	3.1	3.5	3.7	4.0

$\tau_{c \text { max }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{c}=0.496 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{c \text { max }}>\tau_{c}$
d) Minimum Shear reinforcement in the form of stirrups shall be provided such that Page number 48 .C. No: 26.5.1.6. IS 456:2000
$\frac{A_{s v}}{b s_{v}} \geq \frac{0.4}{0.87 f y}$
Where
$A_{s v}=$ Total c/s area of stirrups legs effective in shear
$s_{v}=$ Stirrups spacing along the length of the member
$\mathrm{b}=$ Breadth of the beam
Fy=Charactaristics strength of stirrups should be $\leq 415 \mathrm{~N} / \mathrm{mm}^{2}$
e) Shear reinforcement is provided in 3 ways (Page number 73, IS 456:2000

1) Vertical Stirrups
2) Bent up bars along with stirrups.
3) Inclined Stirrups

For vertical stirrups:

$$
V_{u s}=\frac{0.87 \times \text { Fy x A }}{\mathrm{sv}} \mathrm{x} \mathrm{~d} ~\left(S_{v}\right.
$$

Bent up bars along with stirrups.

$$
V_{u s}=\frac{0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{~A}_{\mathrm{sv}} \mathrm{X} \mathrm{~d}}{S_{v}}(\sin \alpha+\cos \alpha)
$$

Inclined Stirrups

$$
V_{u s}=0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{~A}_{\mathrm{sv}} \mathrm{x} \sin \alpha
$$

Type I: Design of shear reinforcement

Given Data

STEP 1: To find nominal shear reinforcement. (τ_{v})
(Page Number: 72, IS 456:2000)
$\tau_{v}=\frac{V_{u}}{b d}$
$\tau_{v}=$ Nominal Shear Reinforcement
$V_{u}=$ Shear force due to design load
$\mathrm{b}=$ Breadth of the section for T section
$b=b_{w}$
d= Effective depth
STEP 2: To find maximum shear stress ($\tau_{c \text { max }}$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \text { max }}=$?
$\tau_{v}<\tau_{c \text { max }}$, The section is Safe

STEP 3: To find percentage of Steel ($\mathbf{P}_{\mathbf{t}}$)

$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
STEP 4: To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
-	-
-	$\boldsymbol{?}$
-	-

STEP 5: Design of Shear Reinforcement is not required
$\tau_{v}<\tau_{c}$
Design of Shear Reinforcement is not required
Provide the mimimum shear reinforcement
Page number 48 .C. No: 26.5.1.6. IS $456: 2000$
$\frac{A_{s v}}{b s_{v}} \geq \frac{0.4}{0.87 f y}$
Where
$A_{s v}=$ Total c/s area of stirrups legs effective in shear
$s_{v}=$ Stirrups spacing along the length of the member
$\mathrm{b}=$ Breadth of the beam
Fy=Charactaristics strength of stirrups should be $\leq 415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 6: Design of Shear Reinforcement is required ($\tau_{v}>\tau_{c}$)
There are two way for providing shear reinforcement

1) Vertical Stirrups
2) Bent up bars along with stirrups.

a) The shear available for design

$V_{u s}=V_{u}-\tau_{c} b d$ (Page Number 73, IS 456:2000)
b) The shear taken by bent up bars
$V_{u s b}=0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{x} \sin \alpha \quad$ (Page Number 73, IS 456:2000)
where
$\alpha=45^{\circ}$
Fy $=$ Yield stress of main reinf orcement
$\mathrm{A}_{\mathrm{sv}}=$ Area of bent up bars
$V_{u b} \leq \frac{V_{u s}}{2}$
Shear taken by Stirrups
$V_{u s \mathrm{l}}=V_{u s}-V_{u b}$
Spacing $=S_{v}=\frac{0.87 x \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \times \mathrm{d}}{V_{u s 1}}$ (Page Number 73, IS 456:2000)

Check For spacing

i) $\quad \mathrm{Sv}=$ Calculated
ii) $\quad \mathbf{S v}=$ Minimum Spacing
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}$ (Page Number 48, IS 456:2000)
iii) $\quad \mathbf{S v}=$ Maximum Spacing
$S_{v}=0.75 \mathrm{~d}$ or 300 whichever is less (Page Number 47, IS 456:2000)
Take least value of Sv

1. A RC beam $230 \mathrm{~mm} \times 500 \mathrm{~mm}$ overall depth is reinforced with 2 bars of 20 mm diameter with effective cover of $\mathbf{5 0} \mathbf{~ m m}$. The beam is subjected to factored shear force of 30 KN. Design shear reinforcement using vertical stirrups only. Use M15 and Fe 415.
Solution :
Given Data
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Overall depth= $\mathbf{D}=\mathbf{5 0 0} \mathbf{~ m m}$
Diameter of bar $=\phi=20 \mathrm{~mm}$
No of bar $=2$
Ast $=\mathbf{2} \times \frac{\pi}{4} \times \phi^{2}=2 \times \frac{\pi}{4} \times 20^{2}=628.32 \mathrm{~mm}^{2}$
Factored Shear Force=Vu=30 KN
Effective Cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=$ Overall Depth - Effective cover

Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}=500-50=450 \mathrm{~mm}$
$M_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: To find nominal shear reinforcement. $\left(\tau_{v}\right)$
$\tau_{v}=\frac{V_{u}}{b d}$ (Page Number 72, IS 456:2000)
$=\frac{30 \times 10^{3}}{230 \times 450}=0.29 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find maximum shear stress ($\tau_{c \text { max }}$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \max }=2.5 \mathrm{~N} / \mathrm{mm}^{2} \quad$ For $\mathrm{F}_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c \text { max }}$
$0.29<2.5$, The section is Safe
STEP 3: To find percentage of Steel $\left(\mathbf{P}_{\mathbf{t}}\right)$
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{628.32}{230 \times 450}=0.6070$
STEP 4: To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
$\mathbf{0 . 5 0}$	$\mathbf{0 . 4 6}$
$\mathbf{0 . 6 0 7 0}$	$\boldsymbol{?}$
$\mathbf{0 . 7 5}$	$\mathbf{0 . 5 4}$

$\tau_{\mathrm{c}}=0.46+\left[\frac{(0.54-0.46)}{(0.75-0.5)} \mathrm{X}(0.6070-0.5)\right]=0.4942 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c}$
$0.29<0.4942$
Design of Shear Reinforcement is not required
STEP 5: To find spacing of reinforcement ($\mathrm{S}_{\mathbf{v}}$)
Assuming 8 mm diameter, 2 legged Mild steel vertical stirrups ($\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$)

$$
A_{s v}=2 x \frac{\pi}{4} \times \phi^{2}=2 x \frac{\pi}{4} \times 8^{2}=100.54 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& S_{v}=\frac{0.87 \times \text { Fy x A }}{\mathrm{sv}} 0 \text { (Page Number 48, IS 456:2000) } \\
& S_{v}=\frac{0.87 \times 250 \times 100.54}{0.4 \times 230}=237.68 \mathrm{~mm}
\end{aligned}
$$

$\mathrm{Sv}=237.68 \mathrm{~mm} \cong \mathbf{2 3 0} \mathbf{m m}$
Providing 8 mm diameter with 2 legged vertical stirrups @ 230 mm c/c

2. A beam 300 mm X 1010 mm effective has a span of 7 m . It is loaded with udl $45 \mathrm{KN} / \mathrm{m}$ over the entire span. The tensile steel consists of 6 bars of 22 mm diameter. Design the shear reinforcement using M_{20} and Fe 250
Solution :
Given Data
$\mathrm{b}=\mathbf{3 0 0} \mathbf{~ m m}$

Effective depth $\mathbf{d}=1010 \mathbf{~ m m}$
Diameter of $\mathrm{bar}=\phi=22 \mathrm{~mm}$
No of bar $=6$
Ast $=6 \times \frac{\pi}{4} \times \phi^{2}=6 \times \frac{\pi}{4} \times 22^{2}=2280.80 \mathrm{~mm}^{2}$
$\mathrm{L}=7 \mathrm{~m}$
$\mathrm{UDL}=45 \mathrm{KN} / \mathrm{m}$
Factored $u d l=W u=1.5 \mathrm{X} 45=67.5 \mathrm{KN} / \mathrm{m}$

Shear Force $=\mathrm{Vu}=\frac{W_{u} L}{2}=\frac{67.5 \times 7}{2}=236.25 \mathrm{KN}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 250=\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
STEP 1: To find nominal shear reinforcement. $\left(\tau_{v}\right)$
$\tau_{v}=\frac{V_{u}}{b d}$ (Page Number 72, IS 456:2000)
$=\frac{236.25 \times 10^{3}}{300 \times 1010}=0.779 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find maximum shear stress ($\tau_{c \text { max }}$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \max }=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c \max }$
$0.779<2.8$, The section is Safe
STEP 3: To find percentage of Steel (\mathbf{P}_{t})
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{2280.80}{300 \times 1010}=0.7527$
STEP 4: To find design shear strength of concrete $\left(\tau_{c}\right)$

$\mathbf{P t} \%$	τ_{c}
$\mathbf{0 . 7 5}$	$\mathbf{0 . 5 6}$
$\mathbf{0 . 7 5 2 7}$	$\boldsymbol{?}$
$\mathbf{1 . 0 0}$	$\mathbf{0 . 6 2}$

$\tau_{\mathrm{c}}=0.56+\left[\frac{(0.62-0.56)}{(1-0.75)} \mathrm{X}(0.7527-0.75)\right]=0.5606 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}>\tau_{c}$
$0.779>0.5606$
Design of Shear Reinforcement is required
STEP 5: To find Shear available for design ($V_{u s}$)
$V_{u s}=V_{u}-\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u s}=236.25 \times 10^{3}-(0.5606 \times 300 \times 1010)$
$V_{u s}=66.388 \times 10^{3} \mathrm{~N}=66.388 \mathrm{KN}$
Assuming $6 \mathbf{m m}$ diameter, 2 legged mild steel vertical stirrups ($\mathbf{F y}=\mathbf{2 5 0 N} / \mathbf{m m}^{\mathbf{2}}$)
$A_{s v}=2 x \frac{\pi}{4} \mathrm{X} \phi^{2}=2 x \frac{\pi}{4} \times 6^{2}=56.55 \mathrm{~mm}^{2}$
STEP 6: To find spacing of reinforcement ($\mathrm{S}_{\mathbf{v}}$)
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{x} \mathrm{d}}{V_{u s}}$ (Page Number 73, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 56.55 \times 1010}{66.388 \times 10^{3}}=187.12 \mathrm{~mm}$
Check for spacing.
i) $\quad \mathbf{S v}=$ Calculated $=\mathbf{1 8 7 . 1 2} \mathbf{~ m m}$
ii)
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}$ (Page Number 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 56.55}{0.4 \times 300}=102.50 \mathrm{~mm}$
$S_{v}=0.75 \mathrm{~d}$ or 300 mm whichever is less (Page Number 47, IS 456:2000)
iii) $\quad S_{v}=0.75 \times 1010=757.7 \mathrm{~mm}$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Take least value of i, ii and iii
$\mathrm{Sv}=102.50 \mathrm{~mm} \cong \mathbf{1 0 0} \mathbf{~ m m}$
Providing 6 mm diameter with 2 legged vertical stirrups @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

3. Design shear reinforcement for a beam having size $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ effective carrying udl of $50 \mathrm{KN} / \mathrm{m}$ over a simply supported beam of span 7.5 m . The tensile steel consists of $\mathbf{4}$ bars of $\mathbf{2 5} \mathbf{~ m m}$ diameter. Use M_{20} and Fe 415.
Solution :
Given Data
$\mathrm{b}=\mathbf{3 0 0} \mathbf{~ m m}$
$\mathbf{d}=$ Effective depth $=\mathbf{6 0 0} \mathbf{~ m m}$
Diameter of bar $=\phi=25 \mathrm{~mm}$
No of bar $=4$
Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 25^{2}=1963.50 \mathrm{~mm}^{2}$
$\mathrm{L}=7.5 \mathrm{~m}$
UDL= $50 \mathrm{KN} / \mathrm{m}$

L
7.5 m

Shear Force $=\mathrm{Vu}=\frac{W_{u} L}{2}=\frac{75 \times 7.5}{2}=281.25 \mathrm{KN}$
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe 415= $\mathbf{F y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: To find nominal shear reinforcement. (τ_{v})
$\tau_{v}=\frac{V_{u}}{b d}$ (Page Number 72, IS 456:2000)
$=\frac{281.25 \times 10^{3}}{300 \times 600}=1.563 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find maximum shear stress ($\tau_{c \text { max }}$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \text { max }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c \text { max }}$
$1.563<2.8$, The section is Safe
STEP 3: To find percentage of Steel ($\mathbf{P}_{\mathbf{t}}$)
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{1963.50}{300 \times 600}=1.09$
STEP 4: To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
$\mathbf{1 . 0 0}$	$\mathbf{0 . 6 2}$
$\mathbf{1 . 0 9}$	$\boldsymbol{?}$
$\mathbf{1 . 2 5}$	$\mathbf{0 . 6 7}$

$\tau_{\mathrm{c}}=0.62+\left[\frac{(0.67-0.32)}{(1.25-1.00)} \mathrm{X}(1.09-1.00)\right]=0.638 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}>\tau_{c}$
$1.563>0.638$
Design of Shear Reinforcement is required
STEP 5: To find Shear available for design ($V_{u s}$)
$V_{u s}=V_{u}-\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u s}=281.25 \times 10^{3}-(0.638 \times 300 \times 600)$
$V_{u s}=166.41 \times 10^{3} N=166.41 \mathrm{KN}$
Assuming 8 mm diameter, 2 legged HYSD vertical stirrups ($\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{\mathbf{2}}$)

$$
A_{s v}=2 x \frac{\pi}{4} \times \phi^{2}=2 x \frac{\pi}{4} \times 8^{2}=100.54 \mathrm{~mm}^{2}
$$

STEP 6: To find spacing of reinforcement $\left(S_{v}\right)$

$$
\begin{aligned}
& S_{v}=\frac{0.87 \times \text { Fy x A }}{\text { sv }} \times 1 \\
& V_{u s} \\
& S_{v}=\frac{0.87 \times 415 \times 100.54 \times 600}{166.41 \times 10^{3}}=130.88 \mathrm{~mm}
\end{aligned}
$$

Check for spacing.
i) $\quad \mathbf{S v}=$ Calculated $=\mathbf{1 3 0 . 8 8} \mathbf{~ m m}$
ii)
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\text {sv }}}{0.4 b}$ (Page Number 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 415 \times 100.54}{0.4 \times 300}=302.50 \mathrm{~mm}$
$S_{v}=0.75 \mathrm{~d}$ or 300 mm whichever is less (Page Number 47, IS 456:2000)
iii) $\quad S_{v}=0.75 \times 600=450 \mathrm{~mm}$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Take least value of i, ii and iii
$\mathrm{Sv}=130.88 \mathrm{~mm} \cong \mathbf{1 3 0} \mathbf{~ m m}$
Providing 8 mm diameter with 2 legged vertical stirrups @ $130 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

a) Cross -section of beam

b) Longitudinal section of beam
4. A RC beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ overall depth is reinforced with $\mathbf{3}$ bars of $\mathbf{2 0} \mathbf{~ m m}$ diameter with effective cover of $\mathbf{5 0} \mathbf{~ m m}$. The beam is subjected to shear force of 100 KN . Design shear reinforcement using vertical stirrups only. Use \mathbf{M}_{20} and Fe250.
Solution :
Given Data
$\mathrm{b}=\mathbf{3 0 0} \mathbf{~ m m}$
Overall depth $=\mathbf{D}=\mathbf{5 0 0} \mathbf{~ m m}$
Diameter of bar $=\phi=20 \mathrm{~mm}$
No of bar $=3$

Ast $=\mathbf{3} \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 20^{2}=942.47 \mathrm{~mm}^{2}$
Shear Force $=100 \mathrm{KN}$
Factored Shear Force $=V u=1.5 \times 100=150 \mathrm{KN}$
Effective Cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=$ Overall Depth - Effective cover
Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}=500-50=450 \mathrm{~mm}$
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$
STEP 1: To find nominal shear reinforcement. (τ_{v})
$\tau_{v}=\frac{V_{u}}{b d}$ (Page Number 72, IS 456:2000)
$=\frac{150 \times 10^{3}}{300 \times 450}=1.111 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find maximum shear stress ($\tau_{c \text { max }}$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \text { max }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c \text { max }}$
$1.111<2.8$, The section is Safe
STEP 3: To find percentage of Steel ($\mathbf{P}_{\mathbf{t}}$)
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{942.47}{300 \times 450}=0.698$
STEP 4: To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
$\mathbf{0 . 5 0}$	$\mathbf{0 . 4 8}$
$\mathbf{0 . 6 9 8}$	$\boldsymbol{?}$
$\mathbf{0 . 7 5}$	$\mathbf{0 . 5 6}$

$\tau_{\mathrm{c}}=0.48+\left[\frac{(0.56-0.48)}{(0.75-0.5)} \mathrm{X}(0.698-0.5)\right]=0.543 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}>\tau_{c}$

1.111>0.543

Design of Shear Reinforcement is required
STEP 5: To find Shear available for design ($V_{u s}$)
$V_{u s}=V_{u}-\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u s}=150 \times 10^{3}-(0.543 \times 300 \times 450)$
$V_{u s}=76.695 \times 10^{3} N=76.695 \mathrm{KN}$
Assuming $8 \mathbf{m m}$ diameter, 2 legged mild steel vertical stirrups ($\mathbf{F y}=\mathbf{2 5 0 N} / \mathbf{m m}^{\mathbf{2}}$)
$A_{s v}=2 x \frac{\pi}{4} \mathrm{X} \phi^{2}=2 x \frac{\pi}{4} \times 8^{2}=100.54 \mathrm{~mm}^{2}$
STEP 6: To find spacing of reinforcement ($\mathrm{S}_{\mathbf{v}}$)
$S_{v}=\frac{0.87 \mathrm{xFy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{x} \mathrm{d}}{V_{u s}}$ (Page Number 73, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 100.54 \times 450}{76.695 \times 10^{3}}=128.37 \mathrm{~mm}$
Check for spacing.
i) $\quad \mathbf{S v}=$ Calculated $=\mathbf{1 2 8 . 3 7} \mathbf{~ m m}$
ii)
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\text {sv }}}{0.4 b}$ (Page Number 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 100.54}{0.4 \times 300}=182.22 \mathrm{~mm}$
$S_{v}=0.75 \mathrm{~d}$ or 300 mm whichever is less (Page Number 47, IS 456:2000)
iii) $\quad S_{v}=0.75 \times 450=337.5 \mathrm{~mm}$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Take least value of i , ii and iii
$\mathrm{Sv}=128.37 \mathrm{~mm} \cong \mathbf{1 2 0} \mathbf{m m}$
Providing 8 mm diameter with 2 legged vertical stirrups @ $\mathbf{1 2 0} \mathbf{m m} \mathrm{c} / \mathrm{c}$

5. Design shear reinforcement using vertical stirrups and 2 bent up bars for a beam having size $350 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective carrying udl of $75 \mathrm{KN} / \mathrm{m}$ over a simply supported beam of span 7 m . The tensile steel consists of 4 bars of 25 mm diameter. Use M_{20} and Fe 415.
Solution :
Given Data
$\mathrm{b}=\mathbf{3 5 0} \mathbf{~ m m}$
$\mathbf{d}=$ Effective depth $=\mathbf{5 0 0} \mathbf{~ m m}$
Diameter of bar $=\phi=25 \mathrm{~mm}$
No of bar $=4$
Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 25^{2}=1963.50 \mathrm{~mm}^{2}$
$\mathrm{L}=7 \mathrm{~m}$
UDL= $75 \mathrm{KN} / \mathrm{m}$
Factored $u d l=W u=1.5 \times 75=112.5 \mathrm{KN} / \mathrm{m}$

7 m
Shear Force $=\mathrm{Vu}=\frac{W_{u} L}{2}=\frac{112.5 \mathrm{X} 7}{2}=393.75 \mathrm{KN}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe 415=Fy=415 N/mm ${ }^{2}$

STEP 1: To find nominal shear reinforcement. (τ_{v})
$\tau_{v}=\frac{V_{u}}{b d}$ (Page Number 72, IS 456:2000)
$=\frac{393.75 \times 10^{3}}{350 \times 500}=2.25 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find maximum shear stress ($\tau_{c \max }$)
(Page Number 73, Table Number: 20, IS 456:2000)
$\tau_{c \text { max }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c \text { max }}$
$2.25<2.8$, The section is Safe
STEP 3: To find percentage of Steel ($\mathbf{P}_{\mathbf{t}}$)
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{1963.50}{350 \times 500}=1.122$
STEP 4: To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
$\mathbf{1 . 0 0}$	$\mathbf{0 . 6 2}$
$\mathbf{1 . 1 2 2}$	$\boldsymbol{?}$
$\mathbf{1 . 2 5}$	$\mathbf{0 . 6 7}$

$\tau_{\mathrm{c}}=0.62+\left[\frac{(0.67-0.32)}{(1.25-1.00)} \mathrm{X}(1.122-1.00)\right]=0.6444 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}>\tau_{c}$
$2.25>0.644$
Design of Shear Reinforcement is required
STEP 5: To find Shear available for design ($V_{u s}$)
$V_{u s}=V_{u}-\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u s}=393.75 \times 10^{3}-(0.6444 \times 350 \times 500)$
$V_{u s}=280.98 \times 10^{3} N=280.98 \mathrm{KN}$
Assuming out of $\mathbf{2 8 0 . 9 8} \mathbf{K N}$, $\mathbf{5 0} \%$ load is resisted by vertical stirrups (280.98/2 $=\mathbf{1 4 0 . 4 9} \mathrm{KN}$) and $\mathbf{5 0 \%}$ load is resisted by bent up bars.
Shear resisted by bent up bars
Out of $\mathbf{4}$ bars, $\mathbf{2}$ bars are bent up

$$
\begin{aligned}
& V_{u s b}=0.87 \mathrm{~F}_{\mathrm{y}} \mathrm{~A}_{\mathrm{sv}} \operatorname{Sin} \alpha(\text { Page Number } 73, \text { IS } 456: 2000) \\
& V_{u s b}=0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 25^{2} \times \operatorname{Sin}\left(45^{0}\right) \\
& V_{u s b}=250.64 \times 10^{3}=250.64 \mathrm{KN}>140.49 \mathrm{KN}
\end{aligned}
$$

Assuming 8 mm diameter, 2 legged HYSD vertical stirrups ($\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{\mathbf{2}}$)

$$
A_{s v}=2 x \frac{\pi}{4} \times \phi^{2}=2 x \frac{\pi}{4} \times 8^{2}=100.54 \mathrm{~mm}^{2}
$$

STEP 6: To find spacing of reinforcement ($\mathrm{S}_{\mathbf{v}}$)

$$
\begin{aligned}
& S_{v}=\frac{0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{~A}_{\mathrm{sv}} \times \mathrm{d}}{V_{u s}} \text { (Page Number 73, IS 456:2000) } \\
& S_{v}=\frac{0.87 \times 415 \times 100.54 \times 500}{140.49 \times 10^{3}}=129.19 \mathrm{~mm}
\end{aligned}
$$

Check for spacing.

i) $\mathbf{S v}=$ Calculated $=\mathbf{1 2 9 . 1 9} \mathbf{~ m m}$
ii)

$$
S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{~A}_{\mathrm{sv}}}{0.4 b} \text { (Page Number 48, IS 456:2000) }
$$

$$
S_{v}=\frac{0.87 \times 415 \times 100.54}{0.4 \times 350}=259.28 \mathrm{~mm}
$$

$S_{v}=0.75 \mathrm{~d}$ or 300 mm whichever is less (Page Number 47, IS 456:2000)
iii) $\quad S_{v}=0.75 \times 500=375 \mathrm{~mm}$ or 300 mm

$$
S_{v}=300 \mathrm{~mm}
$$

Take least value of i , ii and iii

$$
S v=129.19 \mathrm{~mm} \cong \mathbf{1 2 0} \mathbf{~ m m}
$$

Providing 8 mm diameter with 2 legged vertical stirrups @ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

a) Cross -section of beam

b) Longitudinal section of beam

Limit State of Collapse (Shear)
Zone of Shear Reinforcement

Design Procedure
Solution: Given Data
Width of Beam =b
Overall depth $=$ D
Effective cover= d'
Effective depth d= D-d'
Width of Support= $\mathbf{b}_{\text {s }}$
Diameter of bar $=\phi$
No of bar $=\mathrm{N}$
Ast $=\mathbf{N} \mathbf{X} \frac{\pi}{4} \mathrm{X} \phi^{2}$
The thickness of flange $=D_{f}=$
$\mathrm{L}=$
superimposed load $=$

Fck, Fy

STEP 1: Loading
a) Superimposed Load= Given KN/m
b) Self weight of beam $=A_{w} \times$ Density of Concrete

$$
=? \mathrm{KN} / \mathrm{m}
$$

Total Load= W=? KN/m
Total Factored Load $=\mathrm{Wu}=\mathrm{W} \mathrm{x} 1.5=$? KN / m
STEP 2: Maximum Shear Force

$$
V_{u \max }=\frac{W_{u} L}{2}
$$

STEP 3: To find Design shear force V_{uD}

$$
V_{u D}=V_{u \max }-\mathrm{W}_{\mathrm{u}}\left(\frac{b_{s}}{2}+d\right)
$$

STEP 4: Shear taken by concrete

The design strength of concrete varies with the percentage of steel, different grade of concrete and denoted by τ_{c}. It is shear stress of concrete τ_{c}

Percentage of steel Pt

$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

Pt \%	τ_{c}
$\mathbf{1 . 7 5}$	$\mathbf{0 . 7 5}$
$\mathbf{1 . 8 8 3}$	$\boldsymbol{?}$
2.00	$\mathbf{0 . 7 9}$

$$
\tau_{\mathrm{c}}=0.75+\left[\frac{(0.79-0.75)}{(2.00-1.75)} \mathrm{X}(1.883-1.75)\right]=0.7713 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear resisted by concrete
$V_{u c}=\tau_{c} b d$ (Page Number 73, IS 456:2000)
Maximum Shear resisted by concrete
$V_{u c M a x}=\tau_{c \max } b d$ (Page Number 73, IS 456:2000)
$\tau_{c \text { max }}$ calculated from T.No:20, Page Number 73, IS 456:2000
$\mathrm{V}_{\mathrm{uD}}<V_{\text {uc }}$ Max
The section is safe
STEP 5: The ultimate shear resistance of RC member with minimum stirrups
$V_{u r \text { Min }}=0.4 b d+\tau_{c} b d$
Compare V_{uD} and $V_{\text {urMin }}$
$\mathrm{V}_{\mathrm{uD}}>V_{u r M i n}$
Desi $g n$ of shear reinforcement is required

STEP 6: Shear force for design

$V_{u s}=V_{u D}-\tau_{c} b d$
Zone I: Providing the design shear R/F
Assume diameter of bar, and grade of steel
$S_{v}=\frac{0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{x} \mathrm{d}}{V_{u s}}<0.75 d$ or 300 mm (which is less)
$L s_{1}=\frac{V_{u \text { max }}-V_{u r \text { min }}}{W u}$ (upto this $1^{\text {st }}$ spacing is provided)
Zone III: Providing nominal shear R/F
Because Zone II is depend upon Zone III and it is calculated as
$S_{v}=0.75 d$ or 300 mm (which is less)
$L s_{3}=\frac{0.5 \tau_{\mathrm{c}} \mathrm{b} \mathrm{d}}{W u}$
Zone II: Providing the minimum shear R / F
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}<0.75 \mathrm{~d}$ or 300 mm (which is minimum) (page no: 48, IS 456:2000) $L s_{2}=\frac{L}{2}-L_{S 1}-L_{S 3}$

1) An $R C$ beam of size $230 \mathrm{~mm} \times 750 \mathrm{~mm}$ deep over all supported over a span of 10 m . It carries superimposed load of $32 \mathrm{KN} / \mathrm{m}$. The thickness of flange is 140 mm , the tension reinforcement consists of 6 bars of 25 mm diameter, the width of support is 230 mm . Design the shear reinforcement using vertical stirrups and find the different zone of shear reinforcement, the effective cover is 70 mm . Use M_{20} and Fe 415 .
Solution: Given Data
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Overall depth $=\mathrm{D}=\mathbf{7 5 0} \mathbf{~ m m}$
Effective cover= $\mathbf{d}^{\prime}=\mathbf{7 0} \mathrm{mm}$
Effective depth d=D-d'=750-70 $=\mathbf{6 8 0} \mathbf{m m}$
Width of Support $=b_{s}=\mathbf{2 3 0} \mathbf{~ m m}$
Diameter of bar $=\phi=25 \mathrm{~mm}$
No of bar $=6$
Ast $=6 \times \frac{\pi}{4} \times \phi^{2}=6 \times \frac{\pi}{4} \times 25^{2}=2945.24 \mathrm{~mm}^{2}$
The thickness of flange $=\mathrm{D}_{\mathrm{f}}=140 \mathrm{~mm}$
$\mathrm{L}=10 \mathrm{~m}$
superimposed load $=32 \mathrm{KN} / \mathrm{m}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: Loading
a) Superimposed Load $=32 \mathrm{KN} / \mathrm{m}$
b) Self weight of beam $=\mathrm{A}_{\mathrm{w}} \times$ Density of Concrete

$$
=0.23 \times 0.61 \times 25=3.51 \mathrm{KN} / \mathrm{m}
$$

Total Load= W=35.51 KN/m
Total Factored Load $=\mathrm{Wu}=35.51 \times 1.5=53.261 \mathrm{KN} / \mathrm{m}$
STEP 2: Maximum Shear Force

$$
V_{u \max }=\frac{W_{u} L}{2}=\frac{53.261 \mathrm{X} \mathrm{10}}{2}=266.31 \mathrm{KN}
$$

STEP 3: To find Design shear force V_{uD}

$$
\begin{aligned}
V_{u D} & =V_{u \max }-\mathrm{W}_{\mathrm{u}}\left(\frac{b_{s}}{2}+d\right) \\
& =266.31-53.261\left(\frac{0.230}{2}+0.68\right) \\
V_{u D} & =223.97 \mathrm{KN}
\end{aligned}
$$

STEP 4: Shear taken by concrete

The design strength of concrete varies with the percentage of steel, different grade of concrete and denoted by τ_{c}. It is shear stress of concrete τ_{c}

Percentage of steel Pt

$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{2945.24}{230 \times 680}=1.883$
To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
1.75	$\mathbf{0 . 7 5}$
1.883	$\boldsymbol{?}$
2.00	$\mathbf{0 . 7 9}$

$$
\tau_{\mathrm{c}}=0.75+\left[\frac{(0.79-0.75)}{(2-1.75)} \mathrm{X}(1.883-1.75)\right]=0.7713 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear resisted by concrete
$V_{u c}=\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u c}=0.7713 \times 230 \times 680=120.63 \times 10^{3} N=120.63 \mathrm{KN}$
Maximum Shear resisted by concrete
$V_{u c M a x}=\tau_{c \max } b d$ (Page Number 73, IS 456:2000)
$V_{u c M a x}=2.8 \times 230 \times 680=437.92 \times 10^{3} \mathrm{~N}=437.92 \mathrm{KN}$
$\tau_{c \text { max }}$ calculated from T.No:20, Page Number 73, IS 456:2000
$\mathrm{V}_{\mathrm{uD}}<V_{u c M a x}$
$223.97 K N<437.92 K N$
The section is safe
STEP 5: The ultimate shear resistance of RC member with minimum stirrups
$V_{u r \text { Min }}=0.4 b d+\tau_{c} b d$
$V_{\text {urMin }}=0.4 \times 230 \times 680+0.7713 \times 230 \times 680$
$V_{\text {urMin }}=183.93 \times 10^{3} \mathrm{~N}=183.93 \mathrm{KN}$
Compare V_{uD} and $V_{\text {urMin }}$
223.97 > 183.93

Desi $g n$ of shear reinforcement is required
STEP 6: Shear force for design
$V_{u s}=V_{u D}-\tau_{c} b d$
$V_{u s}=223.97 \times 10^{3}-0.7713 \times 230 \times 680$
$V_{u s}=103.34 \times 10^{3} \mathrm{~N}=103.34 \mathrm{KN}$
Zone I: Providing the design shear R/F
Assume $8 \mathrm{~mm} \phi, 2$ legged mild steel stirrups
Fy $=250 \mathrm{~N} / \mathrm{mm}^{2}$
$S_{v}=\frac{0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{x} \mathrm{d}}{V_{u s}}<0.75 d$ or 300 mm (which is less)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2} \times 680}{103.34 \times 10^{3}}<0.75 \times 680=510$ or 300 mm
$S_{v}=144.01 \mathrm{~mm}<300 \mathrm{~mm}$ (ok)
Providing $=S_{v}=140 \mathrm{~mm}$
$L s_{1}=\frac{V_{u \text { max }}-V_{u r \text { min }}}{W u}=\frac{266.31-183.19}{53.261}=1.56 m$ (upto this $1^{\text {st }}$ spacing is provided)
Zone III: Providing nominal shear R/F
Because Zone II is depend upon Zone III and it is calculated as
$S_{v}=0.75 d$ or 300 mm (which is less)
$S_{v}=0.75 \times 680=510$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Providing $=S_{v}=300 \mathrm{~mm}$
$L s_{3}=\frac{0.5 \tau_{\mathrm{c}} \mathrm{b} \mathrm{d}}{W u}=\frac{0.5 \times 0.7713 \times 230 \times 680}{53.261 \times 10^{3}}=1.132 \mathrm{~m}$

Zone II: Providing the minimum shear R / F
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}<0.75 \mathrm{~d}$ or 300 mm (which is minimum) (page no: 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2}}{0.4 \times 230}<0.75 \times 680=510 \mathrm{~mm}$ or 300 mm
$S_{v}=237.66 \mathrm{~mm}<300 \mathrm{~mm}(\mathrm{ok})$
Providing $=S_{v}=230 \mathrm{~mm}$
$L s_{2}=\frac{L}{2}-L_{S 1}-L_{S 3}$
$L s_{2}=\frac{10}{2}-1.56-1.132$
$L s_{2}=2.308 m$
2) A simply supported $R C$ beam of size $250 \mathrm{~mm} X 700 \mathrm{~mm}$ deep over all supported over a span of 9 m . It carries superimposed load of $35 \mathrm{KN} / \mathrm{m}$. The thickness of flange is 120 mm , the tension reinforcement consists of 6 bars of 25 mm diameter, the width of support is 250 mm . Design the shear reinforcement using vertical stirrups and find the different zone of shear reinforcement, the effective cover is 70 mm . Use M_{20} and Fe 415.

Solution: Given Data
$\mathrm{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Overall depth $=\mathrm{D}=700 \mathrm{~mm}$
Effective cover $=\mathbf{d}{ }^{\prime}=\mathbf{7 0} \mathrm{mm}$
Effective depth $\mathbf{d =}$ D-d $=\mathbf{7 0 0} \mathbf{- 7 0}=\mathbf{6 3 0} \mathrm{mm}$
Width of Support $=\mathbf{b}_{\mathbf{s}} \mathbf{= 2 5 0} \mathbf{~ m m}$
Diameter of bar $=\phi=25 \mathrm{~mm}$
No of bar $=6$
Ast $=\mathbf{6} \times \frac{\pi}{4} \times \phi^{2}=6 \times \frac{\pi}{4} \times 25^{2}=2945.24 \mathrm{~mm}^{2}$
The thickness of flange $=\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}$
$\mathrm{L}=9 \mathrm{~m}$
superimposed load $=35 \mathrm{KN} / \mathrm{m}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{4 1 5}=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: Loading
a) Superimposed Load $=35 \mathrm{KN} / \mathrm{m}$
b) Self weight of beam $=A_{w} \times$ Density of Concrete

$$
=0.25 \times 0.58 \times 25=3.625 \mathrm{KN} / \mathrm{m}
$$

Total Load= W=38.625 KN/m
Total Factored Load $=\mathrm{Wu}=38.625 \times 1.5=57.94 \mathrm{KN} / \mathrm{m}$
STEP 2: Maximum Shear Force

$$
V_{u \max }=\frac{W_{u} L}{2}=\frac{57.94 \mathrm{X} 9}{2}=260.73 \mathrm{KN}
$$

STEP 3: To find Design shear force V_{uD}

$$
\begin{aligned}
V_{u D} & =V_{u \max }-\mathrm{W}_{\mathrm{u}}\left(\frac{b_{s}}{2}+d\right) \\
& =260.73-57.94\left(\frac{0.250}{2}+0.63\right) \\
V_{u D} & =260.73 \mathrm{KN}
\end{aligned}
$$

STEP 4: Shear taken by concrete

The design strength of concrete varies with the percentage of steel, different grade of concrete and denoted by τ_{c}. It is shear stress of concrete τ_{c}

Percentage of steel Pt

$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{2945.24}{250 \times 630}=1.87$
To find design shear strength of concrete (τ_{c})
(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
1.75	$\mathbf{0 . 7 5}$
1.87	$?$
2.00	$\mathbf{0 . 7 9}$

$$
\tau_{\mathrm{c}}=0.75+\left[\frac{(0.79-0.75)}{(2-1.75)} \mathrm{X}(1.87-1.75)\right]=0.77 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear resisted by concrete
$V_{u c}=\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u c}=0.77 \times 250 \times 630=121.25 \times 10^{3} \mathrm{~N}=121.25 \mathrm{KN}$
Maximum Shear resisted by concrete
$V_{u c M a x}=\tau_{c \max } b d$ (Page Number 73, IS 456:2000)
$V_{u c M a x}=2.8 \times 250 \times 630=441 \times 10^{3} N=441 \mathrm{KN}$
$\tau_{c \max }$ calculated from T.No:20, Page Number 73, IS 456:2000
$\mathrm{V}_{\mathrm{uD}}<V_{u c M a x}$
$216.98 K N<441 K N$
The section is safe
STEP 5: The ultimate shear resistance of RC member with minimum stirrups
$V_{u r \text { Min }}=0.4 b d+\tau_{c} b d$
$V_{\text {urMin }}=0.4 \times 250 \times 630+0.77 \times 250 \times 630$
$V_{u r \text { Min }}=184.28 \times 10^{3} \mathrm{~N}=184.28 \mathrm{KN}$
Compare V_{uD} and $V_{\text {urMin }}$
$216.98>184.28$
Desi $g n$ of shear reinforcement is required
STEP 6: Shear force for design

$$
\begin{aligned}
& V_{u s}=V_{u D}-\tau_{c} b d \\
& V_{u s}=216.98 \times 10^{3}-0.77 \times 250 \times 630 \\
& V_{u s}=95.71 \times 10^{3} \mathrm{~N}=95.71 \mathrm{KN}
\end{aligned}
$$

Zone I: Providing the design shear R/F

Assume $8 \mathrm{~mm} \phi, 2$ legged mild steel stirrups
Fy $=250 \mathrm{~N} / \mathrm{mm}^{2}$
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{X} \mathrm{d}}{V_{u s}}<0.75 d$ or 300 mm (which is less)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2} \times 630}{95.71 \times 10^{3}}<0.75 \times 680=510$ or 300 mm
$S_{v}=143.93 \mathrm{~mm}<0.75 \times 630=472.5$ or 300 mm
$S_{v}=140 \mathrm{~mm}<300 \mathrm{~mm}$ (ok)
Providing $=S_{v}=140 \mathrm{~mm}$
$L s_{1}=\frac{V_{u \text { max }}-V_{u r \text { min }}}{W u}=\frac{260.73-184.28}{57.94}=1.32 \mathrm{~m}$ (upto this $1^{\text {st }}$ spacing is provided)
Zone III: Providing nominal shear R/F
Because Zone II is depend upon Zone III and it is calculated as
$S_{v}=0.75 d$ or 300 mm (which is less)
$S_{v}=0.75 \times 630=472.5$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Providing $=S_{v}=3000 \mathrm{~mm}$
$L s_{3}=\frac{0.5 \tau_{\mathrm{c}} \mathrm{b} \mathrm{d}}{W u}=\frac{0.5 \times 0.77 \times 250 \times 630}{57.94 \times 10^{3}}=1.05 \mathrm{~m}$
Zone II: Providing the minimum shear R / F
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}<0.75 \mathrm{~d}$ or 300 mm (which is minimum) (page no: 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2}}{0.4 \times 250}<0.75 \times 630=472.5$ or 300 mm
$S_{v}=218.65 \mathrm{~mm}<300 \mathrm{~mm}(\mathrm{ok})$
Providing $=S_{v}=210 \mathrm{~mm}$
$L s_{2}=\frac{L}{2}-L_{S 1}-L_{S 3}$
$L s_{2}=\frac{9}{2}-1.32-1.105$
$L s_{2}=2.13 m$
3) An RC beam of size $230 \mathrm{~mm} X 750 \mathrm{~mm}$ deep over all supported over a span of 10 m . It carries superimposed load of $30 \mathrm{KN} / \mathrm{m}$. The thickness of flange is 140 mm , the tension reinforcement consists of 6 bars of 25 mm diameter, the width of support is 230 mm . Design the shear reinforcement using vertical stirrups and one bent up bar at 45°. Find the different zone of shear reinforcement, the effective cover is 50 mm . Use M_{20} and Fe 415.
Solution: Given Data
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Overall depth $=D=750 \mathrm{~mm}$
Effective cover= d'= $\mathbf{5 0} \mathbf{~ m m}$
Effective depth $d=D-d^{\prime}=\mathbf{7 5 0 - 5 0}=\mathbf{7 0 0} \mathrm{mm}$
Width of Support $=\mathbf{b}_{\mathrm{s}}=\mathbf{2 3 0} \mathbf{~ m m}$
Diameter of bar $=\phi=25 \mathrm{~mm}$
No of bar $=6$

Ast $=6 \times \frac{\pi}{4} \times \phi^{2}=6 \times \frac{\pi}{4} \times 25^{2}=2945.24 \mathrm{~mm}^{2}$
The thickness of flange $=\mathrm{D}_{\mathrm{f}}=140 \mathrm{~mm}$
$\mathrm{L}=10 \mathrm{~m}$
$\alpha=45^{0}$
superimposed load $=30 \mathrm{KN} / \mathrm{m}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: Loading

a) Superimposed Load $=30 \mathrm{KN} / \mathrm{m}$
b) Self weight of beam $=A_{w} \times$ Density of Concrete

$$
=0.23 \times 0.61 \times 25=3.507 \mathrm{KN} / \mathrm{m}
$$

Total Load= W=33.507 KN/m
Total Factored Load $=W u=33.507 \times 1.5=50.26 \mathrm{KN} / \mathrm{m}$

STEP 2: Maximum Shear Force

$$
V_{u \max }=\frac{W_{u} L}{2}=\frac{50.26 \times 10}{2}=210.34 \mathrm{KN}
$$

STEP 3: To find Design shear force $V_{u D}$

$$
\begin{aligned}
V_{u D} & =V_{u \max }-\mathrm{W}_{\mathrm{u}}\left(\frac{b_{s}}{2}+d\right) \\
& =251.30-50.26\left(\frac{0.230}{2}+0.7\right) \\
V_{u D} & =210.34 \mathrm{KN}
\end{aligned}
$$

STEP 4: Shear taken by concrete

The design strength of concrete varies with the percentage of steel, different grade of concrete and denoted by τ_{c}. It is shear stress of concrete τ_{c}
Percentage of steel Pt
$P_{t}=100 \times \frac{A_{s t}}{b d}$ (Page Number 73, Table Number 19, IS 456:2000)
$P_{t}=100 \times \frac{2945.24}{230 \times 700}=1.524$

To find design shear strength of concrete (τ_{c})

(Page Number 73, Table Number 19, IS 456:2000)

$\mathbf{P t} \%$	τ_{c}
1.50	$\mathbf{0 . 7 2}$
1.524	$\boldsymbol{?}$
1.75	$\mathbf{0 . 7 5}$

$$
\tau_{\mathrm{c}}=0.72+\left[\frac{(0.75-0.72)}{(1.75-1.5)} \mathrm{X}(1.524-1.5)\right]=0.723 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear resisted by concrete
$V_{u c}=\tau_{c} b d$ (Page Number 73, IS 456:2000)
$V_{u c}=0.723 \times 230 \times 700=116.4 \times 10^{3} N=116.4 \mathrm{KN}$
Maximum Shear resisted by concrete
$V_{u c M a x}=\tau_{c \max } b d$ (Page Number 73, IS 456:2000)
$V_{u c M a x}=2.8 \times 230 \times 700=450.8 \times 10^{3} \mathrm{~N}=450.8 \mathrm{KN}$
$\tau_{c \text { max }}$ calculated from T.No:20, Page Number 73, IS 456:2000
$\mathrm{V}_{\mathrm{uD}}<V_{\text {uc }}$ Max
$210.34 K N<450.8 K N$
The section is safe

STEP 5: The ultimate shear resistance of RC member with minimum stirrups
$V_{u r \text { Min }}=0.4 b d+\tau_{c} b d$
$V_{u r \text { Min }}=0.4 \times 230 \times 700+0.723 \times 230 \times 700$
$V_{\text {urMin }}=180.80 \times 10^{3} \mathrm{~N}=180.83 \mathrm{KN}$
Compare V_{uD} and $V_{\text {ur Min }}$
$210.34>180.80$
Desi $g n$ of shear reinforcement is required
STEP 6: Shear force for design
$V_{u s}=V_{u D}-\tau_{c} b d$
$V_{u s}=210.34 \times 10^{3}-0.723 \times 230 \times 700$
$V_{u s}=93.94 \times 10^{3} \mathrm{~N}=93.94 \mathrm{KN}$
Zone I: Providing the design shear R/F
Assume $8 \mathrm{~mm} \phi, 2$ legged mild steel stirrups
$\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
There is 1 bent up bar
$\mathrm{V}_{\mathrm{ub}}=0.87$ x Fy x A $_{\mathrm{sv}} \times \operatorname{Sin} \alpha$ (Page No: 73, IS 456:2000)
$\mathrm{V}_{\mathrm{ub}}=0.87 \times 250 \times 1 \times \frac{\pi}{4} \times 8^{2} \times \operatorname{Sin} 45^{0}=125.32 \times 10^{3} \mathrm{~N}=125.32 \mathrm{KN}$
Re maining shear for strirrups
$\mathrm{V}_{\mathrm{us} 1}=\mathrm{V}_{\mathrm{us}}-\frac{\mathrm{V}_{\mathrm{us}}}{2}=94.94-\frac{94.94}{2}=46.97 \mathrm{KN}$
$S_{v}=\frac{0.87 \times \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}} \mathrm{X} \mathrm{d}}{V_{u s 1}}<0.75 d$ or 300 mm (which is less)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2} \times 700}{46.97 \times 10^{3}}<0.75 \times 700=525$ or 300 mm
$S_{v}=325.861 \mathrm{~mm}>300 \mathrm{~mm}$
Providing $=S_{v}=300 \mathrm{~mm}$
$L s_{1}=\frac{V_{u \text { max }}-V_{u r \text { min }}}{W u}=\frac{251.30-180.80}{50.26}=1.402 \mathrm{~m}$ (upto this $1^{\text {st }}$ spacing is provided)
Zone III: Providing nominal shear R/F
Because Zone II is depend upon Zone III and it is calculated as
$S_{v}=0.75 d$ or 300 mm (which is less)
$S_{v}=0.75 \times 700=525 \mathrm{~mm}$ or 300 mm
$S_{v}=300 \mathrm{~mm}$
Providing $=S_{v}=3000 \mathrm{~mm}$
$L s_{3}=\frac{0.5 \tau_{\mathrm{c}} \mathrm{b} \mathrm{d}}{W u}=\frac{0.5 \times 0.723 \times 230 \times 700}{50.26 \times 10^{3}}=1.158 \mathrm{~m}$

Zone II: Providing the minimum shear R / F
$S_{v}=\frac{0.87 \mathrm{x} \mathrm{Fy} \mathrm{x} \mathrm{A}_{\mathrm{sv}}}{0.4 b}<0.75 \mathrm{~d}$ or 300 mm (which is minimum) (page no: 48, IS 456:2000)
$S_{v}=\frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 8^{2}}{0.4 \times 230}<0.75 \times 630=472.5$ or 300 mm
$S_{v}=237.67 \mathrm{~mm}<300 \mathrm{~mm}$ (ok)
Providing $=S_{v}=230 \mathrm{~mm}$

$$
\begin{aligned}
& L s_{2}=\frac{L}{2}-L_{S 1}-L_{S 3} \\
& L s_{2}=\frac{10}{2}-1.1 .402-1.158 \\
& L s_{2}=2.44 \mathrm{~m}
\end{aligned}
$$

Limit States of Collapse for Bond

BOND: One of the most important assumption in the behavior of reinforced concrete structure is that there is proper 'bond' between concrete and reinforcing bars. The force which prevents the slippage between the two constituent materials is known as bond. In fact, bond is responsible for providing 'strain compatibility ' and composite action of concrete and steel. It is through the action of bond resistance that the axial stress (tensile or compressive) in a reinforcing bar can undergo variation from point to point along its length. This is required to accommodate the variation in bending moment along the length of the flexural member. When steel bars are embedded in concrete, the concrete, after setting, adheres to the surface of the bar and thus resists any force that tends to pull or push this rod. The intensity of this adhesive force bond stress. The bond stresses are the longitudinal shearing stress acting on the surface between the steel and concrete, along its length. Hence bond stress is also known as interfacial shear. Hence bond stress is the shear stress acting parallel to the reinforcing bar on the interface between the bar and the concrete.

The force which prevents the relative movement between concrete and steel is known as bond.
Bond Stress: It is defined as longitudinal shear acting on the surface between steel and concrete.

Types of bond:- Bond stress along the length of a reinforcing bar may be induced under two loading situations, and accordingly bond stresses are two types :

1. Flexural bond or Local bond

2. Anchorage bond or development bond

Flexural bond (τ_{bf}) is one which arises from the change in tensile force carried by the bar, along its length, due to change in bending moment along the length of the member. Evidently, flexural bond is critical at points where the shear ($\mathrm{V}=\mathrm{d} M / \mathrm{dx}$) is significant. Since this occurs at a particular section, flexural bond stress is known as local bond stress.

Anchorage bond $\left(\tau_{\mathrm{bd}}\right)$ is that which arises over the length of anchorage provided for a bar. It also arises near the end or cutoff point of reinforcing bar. The anchorage bond resists the 'pulling out' of the bar if it is in tension or 'pushing in' of the bar if it is in compression. Above figure shows the situation of anchorage bond over a length $\mathrm{AB}\left(=\mathrm{L}_{\mathrm{d}}\right)$. Since bond stresses are developed over specified length L_{d}, anchorage bond stress is also known as developed over a specified length L_{d}, anchorage bond stress is also known as development bond stress. Anchoring of reinforcing bars is necessary when the development length of the reinforcement is larger than the structure. Anchorage is used so that the steel's intended tension load can be reached and pop-outs will not occur. Anchorage shapes can take the form of 180° or 90° hooks.

ANCHORAGE BOND STRESS: Below shows a steel bar embedded in concrete and subjected to a tensile force T. Due to this force There will be a tendency of bar to slip out and this tendency is resisted by the bond stress developed over the perimeter of the bar, along its length of embedment.

Let us assume that average uniform bond stress is developed along the length. The required length necessary to develop full resisting force is called Anchorage length in case of axial tension or compression and development length in case of flexural tension and is denoted by L_{d}.

The factored to achieved increased in bond

1) Used higher grade of concrete
2) The compaction and curing should be perfect
3) Provide the adequate cover to the steel reinforcement
4) Used rough surface steel bar (i.e HYSD)
5) Used the deform or twisted bar

Development length: A development length can be defined as the amount of reinforcement(bar) length needed to be embedded or projected into the column to establish the desired bond strength between the concrete and steel Length of development of reinforcement bars. A growth length can be defined as a length of reinforcement (bar) that must be embedded or projected into the column to establish.

Reason for providing the length of development

1. Develop a secure bond between the surface of the bar and the concrete so that any failure due to slippage of the bar does not occur during the final load conditions.
2. Furthermore, the additional length of the bar provided as the length of the growth is attributed to the stresses developed in any section of adjacent sections (such as the additional length of the bar provided from the beam to the column at the column beam junction).

Importance of Development Length

The provision of appropriate development is an important aspect of safe construction practices. Proper development lengths in reinforcement bars shall be provided according to the steel grade considered in the design.

Factors affecting Development Length

1) Grade of concrete: Higher the grade of concrete is used so get greater strength
2) Diameter of bar: Greater is the bar diameter less is bond resistance because length diameter having greater cracking
3) Nature of the stress: Transfer of compression from concrete increase the grip and frictional resistance.
4) The bends and hooks: The increased in bond resistance at the bend is due to increase in frictional resistance. The bend having radial components of bar tension which increased the bond and additional anchorage length.
5) Cover: If cover is not sufficient or when the horizontal distance between two parallel main reinforcement bar is less the ultimate cracking and reduction in bond strength.
6) Curtailment of bar: Curtailment of bar in tension zone create a condition of different strain adjacent bar and affecting the bond strength.
7) Grouping of the bar: The bond strength reduced for the bundles bar due to reduction in surface area.

Consider a cantilever beam of uniform c / s
Let
$\phi=$ Diameter of bar
$\mathrm{T}=$ Maximum tension in the bar
The force acting on bar
$\mathrm{F}=0.87 \mathrm{Fy} \mathrm{A} \mathrm{A}_{\mathrm{st}}$
$F=0.87 \times \operatorname{Fy~x} \frac{\pi}{4} \phi^{2}$
Prof. Durgesh H Tupe

This force must be transfer from steel to concrete through bond along acting over the perimeter of the bar in length $A B=L_{d}$

Free body diagram
of segment $A B$
$\tau_{b d}=$ bond design stress acting on the surface area
Surface Area $=\pi \phi \mathrm{L}_{\mathrm{d}}$
Force $=$ Stress x area
The force transferred to the concrete through the bond
$\mathrm{F}=\tau_{b d} \pi \phi \mathrm{~L}_{\mathrm{d}}$

For equilibrium equate equation 1 and 2
$0.87 \times$ Fy x $\frac{\pi}{4} \phi^{2}=\tau_{b d} \pi \phi \mathrm{~L}_{\mathrm{d}}$
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad$ Page No: 42 , IS 456:2000, C.No: 26.2.1
$\mathrm{L}_{\mathrm{d}}=k \phi$
$k=\frac{0.87 \times \text { Fy }}{4 \tau_{b d}}$
$k=$ Development length factor
IS 456:2000, P. No: 43, C. No: 26.2.1.1

DESIGN BOND STRESS:-

The design bond stress in limit state method for plain bars in tension shall be as given below

Grade of concrete	M 20	M 25	M 30	M 35	M 40 and above
Design bond stress $\tau_{\mathrm{bd}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	1.2	1.4	1.5	1.7	1.9

Design bond stresses for deformed bars in tension : For deformed bars conforming to IS 1786.
These values shall be increased by 60%.
Design bond stress for bars in compression : For bars in compression, the values of bond stress for in tension shall be increased by 25%.

1) To calculate development length of M_{20} and $\mathrm{Fe} \mathbf{2 5 0}$

Solution:

$\mathrm{F}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43 , T. No: 26.2.1.1, IS 456: 2000)
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \quad$ Page No: 42 , IS 456:2000, C.No: 26.2.1
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 250 \times \phi}{4 \times 1.2}=45.31 \phi \cong 46 \phi$
2) To calculate development length of M_{20} and Fe 415

Solution:
$F_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$F y=415 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43 , T. No: 26.2.1.1, IS 456: 2000)
$\tau_{b d}=1.2 \times 1.6=1.92 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43 , T. No: 26.2.1.1, IS 456: 2000)
This value is increased by 60% by HYSD bar i.e. Fy 415 and Fy 500
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \quad$ Page No: 42 , IS 456:2000, C.No: 26.2.1
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 415 \mathrm{X} \phi}{4 \times 1.92}=47.01 \phi \cong 47 \phi$
3) To calculate development length of M_{20} and $\mathrm{Fe} \mathbf{2 5 0}$ for bar in compression Solution:
$F_{\text {ck }}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43 , T. No: 26.2.1.1, IS 456: 2000)
$\tau_{b d}=1.2 \times 1.25=1.5 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43, T. No: 26.2.1.1, IS 456: 2000)
This value is increased by 25% when bar in compression bar

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \text { Page No: } 42, \text { IS 456:2000, C.No: 26.2.1 } \\
& \mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 250 \mathrm{X} \phi}{4 \times 1.50}=36.25 \phi \cong 37 \phi
\end{aligned}
$$

4) To calculate development length of M_{20} and $\mathrm{Fe} \mathbf{4 1 5}$ when bar is in tension as well as compression
Solution:
$\mathrm{F}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ (P. No: 43 , T. No: 26.2.1.1, IS 456: 2000)
$\tau_{b d}=1.2 \times 1.6=1.92 \mathrm{~N} / \mathrm{mm}^{2}$ (Tension)
$\tau_{b d}=1.92 \times 1.25=2.4 \mathrm{~N} / \mathrm{mm}^{2}$ (Compression)

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \text { Page No: } 42, \text { IS 456:2000, C.No: 26.2.1 } \\
& \mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 415 \mathrm{X} \phi}{4 \times 2.4}=37.61 \phi \cong 38 \phi
\end{aligned}
$$

DEVELOPMENTS LENGTH REQUIREMENTS AT SIMPLE SUPPORTS :

The code stipulates that at the simple supports (and at the point of inflection), the positive moment tension reinforcement shall be limited to a diameter such that
$L_{d}=\frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
Where $L_{d}=$ developments length computed for design stress $f_{y d}\left(=0.87\right.$ fy) from Eqn $\mathrm{M}_{1}=$ Moments resistance of the section assuming all reinforcement at the section to be stressed to f_{yd} ($=0.87 \mathrm{fy}$)
$\mathrm{V}=$ Shear force at the section due to design loads
$\mathrm{Lo}=$ sum of anchorage beyond the centre of supports and the equivalent anchorage value of any hook or mechanical anchorage at the simple support (At the point of inflexion, Lo is limited to d or 12ϕ whichever is greater).

In simple support or beam resting on wall or column the reaction induced compressive stress. So bond resistant increases. The IS Code allow 30% increased in the value of $\mathrm{M}_{1} / \mathrm{V}$
$L_{d}=1.3 \frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)

Anchorage value of Bends and hooks - Bends and hooks shall conform to IS 2502
(IS 456:2000 , P No: 43 , C. No: 26.2.2.1)

1) Bends-The anchorage value of bend shall be taken as 4 times the diameter of the bar for each 45^{0} bend subject to a maximum of 16 times the diameter of the bar (ϕ).

Anchorage value for $\mathbf{4 5}^{\mathbf{0}}$ bend $=4 \phi$
Anchorage value for 90^{0} bend $=8 \phi$
Anchorage value for 135° bend $=12 \phi$
Anchorage value for 180° bend $=16 \phi$
Where $\phi=$ Diameter of bar
2) Hooks-The anchorage value of a standard U-type hook shall be equal to 16 times the diameter of the bar.

For mild steel i.e Fe $250=\mathbf{n =} \mathbf{2}$

For HYSD bar i.e Fe 415 and $\mathrm{Fe} 500=\mathrm{n}=4$

1) Determine the anchorage value 180° bend and grade of steel is Fe 250

Solution: $\theta=\mathbf{1 8 0}^{\boldsymbol{0}}$

$$
\mathrm{Fy}=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

Anchorage Length $=\mathrm{L}_{0}=\mathrm{X}_{0}+\mathbf{1 6} \phi \quad\left(\mathbf{1 8 0}^{\mathbf{0}}\right.$ bend $)$

$$
\begin{aligned}
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(n+1) \phi \\
& \mathrm{X}_{1}=\text { Clear Cover } \\
& b_{s}=\text { Width of support } \\
& \mathrm{n}=2(\mathrm{Fe} 250) \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(2+1) \phi \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-3 \phi \\
& L_{0}=\mathrm{X}_{0}+16 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-3 \phi+16 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}+13 \phi
\end{aligned}
$$

2) Determine the anchorage value 180° bend and grade of steel is Fe 415

Solution: $\theta=\mathbf{1 8 0}^{\boldsymbol{0}}$

$$
F y=415 \mathrm{~N} / \mathrm{mm}^{2}
$$

Anchorage Length $=L_{0}=X_{0}+16 \phi \quad\left(180^{0}\right.$ bend $)$

$$
\begin{aligned}
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(n+1) \phi \\
& \mathrm{X}_{1}=\text { Clear Cover } \\
& b_{s}=\text { Width of support } \\
& \mathrm{n}=4(\mathrm{Fe} 415) \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(4+1) \phi \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-5 \phi \\
& L_{0}=\mathrm{X}_{0}+16 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-5 \phi+16 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}+11 \phi
\end{aligned}
$$

3) Determine the anchorage value $90^{\boldsymbol{0}}$ bend and grade of steel is Fe 250

Solution: $\theta=\mathbf{9 0}{ }^{0}$

$$
F y=250 \mathrm{~N} / \mathrm{mm}^{2}
$$

Anchorage Length $=L_{0}=X_{0}+8 \quad \phi \quad\left(90^{0}\right.$ bend $)$
$\mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(n+1) \phi$
$\mathrm{X}_{1}=$ Clear Cover
$b_{s}=$ Width of support
$\mathrm{n}=2$ (Fe 250)
$\mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(2+1) \phi$
$\mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-3 \phi$
$L_{0}=\mathrm{X}_{0}+8 \phi$
$L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-3 \phi+8 \phi$
$L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}+5 \phi$
4) Determine the anchorage value 90° bend and grade of steel is Fe 415

Solution: $\theta=\mathbf{9 0}{ }^{\boldsymbol{0}}$
$\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Anchorage Length $=L_{0}=X_{0}+8 \quad \phi \quad\left(90^{0}\right.$ bend $)$

$$
\begin{aligned}
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(n+1) \phi \\
& \mathrm{X}_{1}=\text { Clear Cover } \\
& b_{s}=\text { Width of support } \\
& \mathrm{n}=4(F e 415) \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-(4+1) \phi \\
& \mathrm{X}_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-5 \phi \\
& L_{0}=\mathrm{X}_{0}+8 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}-5 \phi+8 \phi \\
& L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}+3 \phi
\end{aligned}
$$

1) A simply supported beam is $250 \mathrm{~mm} \times 500 \mathrm{~mm}$ overall having 2 bars of 20 mm diameter going into the support, if the shear force at the support is $\mathbf{1 3 5} \mathrm{KN}$ as working load. Find the anchorage length, the clear cover is 25 mm . Use M_{20} and Fe 415.

Solution:-

Given Data:- b=250 mm
$D=500 \mathrm{~mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=2$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{20}{2}=35 \mathrm{~mm}$
Effective depth $=\mathrm{d}=\mathrm{D}-\mathrm{d}^{\prime}=500-\mathbf{- 3 5}=\mathbf{4 6 5} \mathrm{mm}$

$$
\text { Ast }=2 \times \frac{\pi}{4} \times \phi^{2}=2 \times \frac{\pi}{4} \times 20^{2}=628.32 \mathrm{~mm}^{2}
$$

Working Shear Force $=\mathbf{1 3 5} \mathbf{K N}$
Factored Shear Force=V=135 $\times 1.5=\mathbf{2 0 2 . 5} \mathrm{KN}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathbf{F y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Prof. Durgesh H Tupe

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 628.32}{0.36 \times 20 \times 250}=126.03 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
Xu max $=0.48 \mathrm{~d}$ \qquad .For Fe 415

Xu max $=0.48 \times 465=223.20 \mathrm{~mm}$
STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$126.03 \prec 223.20$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 628.32(465-0.42 \times 126.03)=93.48 \times 10^{6} \mathrm{Nmm}=93.48 \mathrm{KNm}$
STEP 5: To find anchorage length
$L_{d}=1.3 \frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad$ Page No: 42, IS 456:2000, C.No: 26.2.1
$\tau_{b d}=1.2 \times 1.6 \times 1.25=2.4 \mathrm{~N} / \mathrm{mm}^{2}$
60% for HYSD bar
25% for compression zone
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 415 \mathrm{X} \mathrm{20}}{4 \times 2.4}=752.19 \mathrm{~mm}$
$752.19=\left(1.3 \times \frac{93.48 \times 10^{6}}{202.5 \times 10^{3}}\right)+l_{0} \quad($ IS 456:2000, P No: 44, C.No: 26.2.3.3)
$752.19=600.11+l_{0}$
$l_{0}=752.19-600.11=152.07 \mathrm{~mm}$
2) A simply supported beam is $300 \mathrm{~mm} \times 450 \mathrm{~mm}$ overall having $\mathbf{3}$ bars of $\mathbf{1 4} \mathbf{~ m m}$ diameter going into the support, if the shear force at the support is 150 KN as working load. Find the anchorage length, the clear cover is $\mathbf{2 5} \mathbf{~ m m}$. If the width of support is $\mathbf{1 5 0} \mathbf{~ m m}$. If it is suggested to have straight bar. How much will be diameter of bar? Use M_{20} and Fe 415.

Solution:-

Given Data:- b = $\mathbf{3 0 0} \mathbf{~ m m}$
$\mathrm{D}=\mathbf{4 5 0} \mathrm{mm}$
$\phi=14 \mathrm{~mm}$
No of bar $=3$
Clear cover $=25 \mathrm{~mm}$
$\mathbf{d}^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{14}{2}=32 \mathrm{~mm}$
Effective depth $=\mathbf{d}=$ D $-\mathbf{d}^{\prime}=\mathbf{4 5 0} \mathbf{- 3 2}=\mathbf{4 1 8} \mathbf{~ m m}$

$$
\text { Ast }=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 14^{2}=461.81 \mathrm{~mm}^{2}
$$

Working Shear Force $=\mathbf{1 5 0 K N}$
Factored Shear Force $=$ V=150 $\mathbf{x} \mathbf{1 . 5}=\mathbf{2 2 5} \mathbf{K N}$

$$
\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$$
0.36 \mathrm{FckXub}=0.87 \mathrm{Fy} \text { Ast }
$$

$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 461.81}{0.36 \times 20 \times 300}=77.19 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8} \mathbf{d}$ \qquad .For Fe 415

Xu max $=0.48 \times 418=200.64 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu} \max$
$77.19 \prec 200.64$
then section is under reinforced

STEP 4: To find moment of resistance

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 461.81(418-0.42 \times 77.19)=64.29 \times 10^{6} \mathrm{Nmm}=64.29 \mathrm{KNm}$

STEP 5: To find anchorage length

Since bar is going into the support i.e. the bar are going in compression
$L_{d}=1.3 \frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \quad$ Page No: 42 , IS 456:2000, C.No: 26.2.1
$\tau_{b d}=1.2 \times 1.6 \times 1.25=2.4 \mathrm{~N} / \mathrm{mm}^{2}$
60% for HYSD bar
25% for compression zone
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 415 \times 14}{4 \times 2.4}=526.53$
$526.53=\left(1.3 x \frac{64.29 \times 10^{6}}{225 \times 10^{3}}\right)+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
$526.53=371.45+l_{0}$
$l_{0}=526.53-371.45=155.07 \mathrm{~mm}$
For straight bar
$L_{0}=\frac{b_{s}}{2}-\mathrm{X}_{1}$
$b_{s}=150 \mathrm{~mm}$
$\mathrm{X}_{1}=25 \mathrm{~mm}$
$L_{0}=\frac{150}{2}-25=50 \mathrm{~mm}$
$L_{d}=1.3 \frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
$\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}}=1.3 \frac{M_{1}}{V}+l_{0} \quad$ (IS 456:2000, P No: 44, C.No: 26.2.3.3)
$\frac{0.87 \times 415 \phi}{4 \times 2.4}=1.3 \frac{64.29 \times 10^{6}}{225 \times 10^{3}}+50$
$\phi=11.21 \mathrm{~mm}$
Providing 10 mm diameter of bar
Number of bar $=\mathrm{N}=\frac{3 \times \frac{\pi}{4} \times 14^{2}}{\frac{\pi}{4} \times 10^{2}}=5.88 \cong 6$
3) A continuous beam $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ overall depth carries $\mathbf{3}$ bars of $\mathbf{1 6} \mathbf{m m}$ diameter beyond the point of inflection in sagging moment. If factored shear force at inflection is 150 KN . Check if the bar is safe in bond. The clear cover is $\mathbf{2 5} \mathbf{~ m m}$. Use \mathbf{M}_{20} and $\mathbf{F e}$ 250.

Solution:-
Given Data:- b=250 mm
$D=\mathbf{4 0 0} \mathrm{mm}$
$\phi=16 \mathrm{~mm}$
No of bar $=3$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{16}{2}=33 \mathrm{~mm}$
Effective depth $=$ d $=$ D $-\mathbf{d}^{\prime}=\mathbf{4 0 0} \mathbf{- 3 3}=\mathbf{3 6 7} \mathbf{~ m m}$

$$
\text { Ast }=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 16^{2}=603.19 \mathrm{~mm}^{2}
$$

Factored Shear Force=V=150 KN
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{2 5 0}=\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 250 \times 603.19}{0.36 \times 20 \times 250}=72.88 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad For Fe 250
$\mathrm{Xu} \max =0.53 \times 367=194.51 \mathrm{~mm}$
STEP 3: To compare $\mathbf{X u}$ and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$72.99 \prec 194.51$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 250 \times 603.19(367-0.42 \times 72.99)=44.13 \times 10^{6} \mathrm{Nmm}=44.13 \mathrm{KNm}$
STEP 5: To find anchorage length
Since bar is not going into the support and point of inflection (Contraflexure)
IS 456:2000, P.No: 44, C. No: 26.2.3.4
$L_{0}=d$ or 12ϕ (Whichever is greater)
$L_{0}=367$ or $12 \times 16=192$ (Whichever is greater)
$L_{0}=367 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}}$
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 250 \mathrm{X} \phi}{4 \times 1.2}=45.31 \phi$
$\mathrm{L}_{\mathrm{d}}=\frac{M_{1}}{V}+l_{0}$
$45.31 \phi=\frac{44.13 \times 10^{6}}{150 \times 10^{3}}+367$
$\phi=14.59 \mathrm{~mm}<16 \mathrm{~mm}$
Hence 16 diameter bar is unsafe for the bond
Provide $\phi=12 \mathrm{~mm}$
Number of bar $=\frac{3 \times \frac{\pi}{4} \times 16^{2}}{\frac{\pi}{4} \times 12^{2}}=5.3 \cong 6$
4) A continuous beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective depth carries $\mathbf{3}$ bars of 20 mm diameter beyond the point of inflection in sagging moment. If factored shear force at inflection is $\mathbf{1 7 5} \mathrm{KN}$. Check if the bar is safe in bond. Use M_{20} and Fe 250.

Solution:-

Given Data:- b=250 mm
$\mathrm{d}=\mathbf{5 0 0} \mathrm{mm}$
$\phi=20 \mathrm{~mm}$
No of bar $=3$
Ast $=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 20^{2}=942.48 \mathrm{~mm}^{2}$
Factored Shear Force=V=175 KN
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{2 5 0}=\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
0.36FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 250 \times 942.48}{0.36 \times 20 \times 300}=94.90 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad For Fe 250

Xu max $=0.53 \times 500=265 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$94.90 \prec 265$
then section is under reinforced

STEP 4: To find moment of resistance

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast (d-0.42 Xu)
$\mathrm{Mu}=0.87 \times 250 \times 942.48(500-0.42 \times 94.90)=94.32 \times 10^{6} \mathrm{Nmm}=94.32 \mathrm{KNm}$
STEP 5: To find anchorage length
Since bar is not going into the support and point of inflection (Contraflexure)
IS 456:2000, P.No: 44, C, No: 26.2.3.4
$L_{0}=d$ or 12ϕ (Whichever is greater)
$L_{0}=500$ or $12 \times 20=240$ (Whichever is greater)
$L_{0}=500 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times \text { Fy } \phi}{4 \tau_{b d}} \quad \quad$ Page No: 42 , IS 456:2000, C.No: 26.2.1
$\tau_{b d}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 250 \mathrm{X} \phi}{4 \times 1.2}=45.31 \phi$
$\mathrm{L}_{\mathrm{d}}=\frac{M_{1}}{V}+l_{0}$
$45.31 \phi=\frac{94.32 \times 10^{6}}{175 \times 10^{3}}+500$
$\phi=22.93 \mathrm{~mm}>20 \mathrm{~mm}$
Hence 20 diameter bar is safe for the bond

UNIT 2

"DESIGN OF BEAM"

Limit state of collapse for flexure :- Page No: 69 and clause No: 38.1

Assumption made in Limit state of collapse for flexure:

1) Plane sections normal to the axis remain plane after bending.
2) The maximum strain in concrete at the outermost compression fibre is taken as 0.0035 in bending.
3) The relationship between the compressive stress distribution in concrete and the strain in concrete may be assumed to be rectangle, trapezoid, parabola or any other shape which results in prediction of strength in substantial agreement with the results of test. An acceptable stressstrain curve is given in Fig. For design purposes, the compressive strength of concrete in the structure shall be assumed to be 0.67 times the characteristic strength. The partial safety factor $\mathrm{y},=1.5$ shall be applied in addition to this.
NOTE - For the stress-strain curve in Fig. the design stress block parameters are as follows
Area of stress block $=0.36 \mathrm{~F}_{\mathrm{CK}} \mathrm{X}_{\mathrm{U}}$
Depth of centre of compressive force $=0.425 \mathrm{X}_{\mathrm{U}}$
from the extreme fibre in compression
Where
$\mathrm{F}_{\mathrm{CK}}=$ characteristic compressive strength of concrete
$X_{U}=$ depth of neutral axis.
4) The tensile strength of the concrete is ignored.
5) The stresses in the reinforcement are derived from representative stress-strain curve for the type of steel used. Typical curves are given in Fig.. For design purposes the partial safety factor ${ }^{\prime} \Upsilon_{m}$, equal to 1.15 shall be applied.
6) The maximum strain in the tension reinforcement in the section at failure shall not be less than:
$\mathrm{F}_{\mathrm{y}} /\left(1.15 \mathrm{E}_{\mathrm{s}}\right)+0.002$
where
$\mathrm{F}_{\mathrm{y}}=$ characteristic strength of steel, and
$\mathrm{E}_{\mathrm{s}}=$ modulus of elasticity of steel.

For concrete stress-strain diagram shown in figure the curve from 0 to 0.002 the stain is parabolic and for 0.002 to 0.0035 strain is constant. The compressive strength in concrete is assumed to $0.67 \mathrm{~F}_{\mathrm{ck}}$ and further is divided by partial safety factor 1.5 .

The compressive strength in concrete for design purpose is $=0.67 \mathrm{~F}_{\mathrm{ck}} /{ }_{\mathrm{h}}$

$$
\begin{aligned}
& =0.67 \mathrm{~F}_{\mathrm{ck}} / 1.5 \\
& =0.446 \mathrm{~F}_{\mathrm{ck}}
\end{aligned}
$$

For steel design purpose the yield stress in steel $=\mathrm{F}_{\mathrm{y}} /{ }^{\prime} \Upsilon_{\mathrm{m}}$

$$
=\mathrm{F}_{\mathrm{y}} / 1.15=0.87 \mathrm{~F}_{\mathrm{y}}
$$

Stress $=$ Force $/$ area $=F / \mathrm{A}_{\text {st }}$
Force $=$ Stress / area
$\mathrm{F}=$ Stress / A_{st}
Force in Steel $=0.87 \mathbf{F}_{\mathbf{y}} \mathbf{A}_{\text {st }}$

SECTION

1) Balanced Section
2) Under reinforced Section
3) Over reinforced Section

1) Balanced Section

When ratio of steel at concrete in section in such that strain in steel and concrete reaches its maximum value. At the same time section is called balance section.

The percentage of steel in this section is caused critical percentage of steel or limiting percentage of steel and denoted by Pt limit and depth of neutral axis called depth of critical neutral axis.

2) Under reinforced Section

The percentage of steel in this section is less than critical percentage of steel or limiting percentage of steel, this section is called under reinforced section.

In under reinforced section steel failed first. In under reinforced section amount of steel is less than the balance section. The neutral axis more above neutral axis to satisfied equilibrium condition .

Under Relnforced Section

3) Over reinforced Section

The percentage of steel in this section is more than critical percentage of steel or limiting percentage of steel, this section is called over reinforced section. In over reinforced section amount of steel is more than the balance section. The neutral axis below the neutral axis to satisfied equilibrium condition .

Over Reintoreed Section

NOTE:- Over reinforced Section is not permitted in limit state

SINGLY REINFORCED SECTION:- A section in which steel is provided on tension side only.

Strain diagram Stress diagram

Where,
$D=$ Over all depth
$d=$ effective depth
$\mathrm{b}=$ width of section
$d^{\prime}=$ effective cover
Ast $=$ area of steel in tension
$\mathrm{F}_{\mathrm{CK}}=$ characteristic compressive strength of concrete
$\mathrm{X}_{\mathrm{U}}=$ depth of neutral axis.
$\mathrm{F}_{\mathrm{y}}=$ characteristic strength of steel

$$
\begin{equation*}
\mathrm{a}=0.57 \mathrm{Xu} \tag{1}
\end{equation*}
$$

For the design purpose maximum stresses in concrete $=0.67 \mathrm{~F}_{\mathrm{ck}} /{ }^{\prime} \Upsilon_{\mathrm{m}}$

$$
\begin{aligned}
& =0.67 \mathrm{~F}_{\mathrm{ck}} / 1.5 \\
& =0.446 \mathrm{~F}_{\mathrm{ck}}
\end{aligned}
$$

0.446 fck

$\mathbf{X u}$

Depth of rectangle $=X u-a$

$$
=\mathrm{Xu}-0.57 \mathrm{Xu}=0.43 \mathrm{Xu} \quad \text { From (1) }
$$

Total compressive force $=$ Area of stress block X width of section
$\mathrm{Cu}=($ Area of rectangle + Area of parabola $) \mathrm{Xb}$
$\mathrm{Cu}=(0.43 \mathrm{Xu} \mathrm{X} \mathrm{0.446} \mathrm{Fck})+(0.57 \mathrm{Xu}$ X $(2 / 3) 0.446$ Fck $) \mathrm{X}$ b
$\mathrm{Cu}=0.36$ Fck Xu b
The position of Cu from extreme fiber
$\bar{Y}=0.42 \mathrm{Xu}$

Design stress in steel $=\mathrm{F}_{\mathrm{y}} /{ }^{\prime} \Upsilon_{\mathrm{m}}=\mathrm{F}_{\mathrm{y}} / 1.15=0.87 \mathrm{~F}_{\mathrm{y}}$
Total tensile force $\mathrm{Tu}=$ Area of steel X Stress in steel

$$
\mathrm{Tu}=\mathrm{Ast} \mathrm{X} 0.87 \mathrm{~F}_{\mathrm{y}}
$$

Position of neutral axis

Tensile force $=$ Compressive force
$0.87 \mathrm{~F}_{\mathrm{y}}$ Ast $=0.36$ Fck Xu b
$\mathrm{Xu}=\frac{0.87 \mathrm{FyAst}}{0.36 \mathrm{Fckb}}$
Dividing d on both sides
$\frac{\mathrm{Xu}}{\mathrm{d}}=\frac{0.87 \mathrm{FyAst}}{0.36 \mathrm{Fckbd}} \quad \quad$ Page No 96
First principle calculate the values

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
4) From first principle calculate the values of $K u$ max, $R u$ max and Pt max for Fe $250 \& M_{20}$

Solution :- $\mathrm{M}_{20}=\mathrm{Fck}=\mathbf{2 0} \mathrm{N} / \mathrm{mm}^{2}$
Fe $250=\mathrm{Fy}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{\mathrm{d}}=\frac{700}{1100+0.87 \times 250}=0.531$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 20 \times 0.531(1-0.42 \times 0.531)=2.97$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 20}{0.87 \times 250} \times 0.531 X 100=1.757 \%$
2) From first principle calculate the values of $K u$ max, $R u$ max and $P t \max$ for $F \mathbf{F e} \mathbf{2 5 0} \& \mathrm{M}_{\mathbf{2 5}}$

Solution :- $\mathrm{M}_{25}=\mathrm{Fck}=\mathbf{2 5} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{2 5 0}=\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{\mathrm{d}}=\frac{700}{1100+0.87 \times 250}=0.531$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 25 \times 0.531(1-0.42 \times 0.531)=3.713$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 25}{0.87 \times 250} \times 0.531 X 100=2.197 \%$
3) From first principle calculate the values of $K u$ max, $R u$ max and $P t \max$ for $F \mathbf{F e} 250 \& M_{30}$

Solution :- $\mathrm{M}_{30}=\mathrm{Fck}=\mathbf{3 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{2 5 0}=\mathbf{F y}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{\mathrm{d}}=\frac{700}{1100+0.87 \times 250}=0.531$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 30 \times 0.531(1-0.42 \times 0.531)=4.46$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 30}{0.87 \times 250} \times 0.531 \times 100=2.64 \%$
4) From first principle calculate the values of $K u$ max, $R u \max$ and $P t \max$ for $\mathrm{Fe} 415 \& \mathrm{M}_{20}$

Solution :- $\mathrm{M}_{20}=\mathrm{Fck}=\mathbf{2 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 415}=0.48$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 20 \times 0.48(1-0.42 \times 0.48)=2.76$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 20}{0.87 \times 415} \times 0.48 \times 100=0.96 \%$
5) From first principle calculate the values of Ku max, Ru max and Pt max for $\mathrm{Fe} 415 \& \mathrm{M}_{25}$

Solution :- $\mathbf{M}_{25}=\mathbf{F c k}=\mathbf{2 5} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$

1) $\operatorname{Kumax}=\frac{\text { Xumax }}{\mathrm{d}}=\frac{700}{1100+0.87 \mathrm{Fy}}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 415}=0.48$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 25 \times 0.48(1-0.42 \times 0.48)=3.45$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u$ max $X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 25}{0.87 \times 415} \times 0.48 \times 100=1.20 \%$
6) From first principle calculate the values of $\mathrm{Ku} \max , \mathrm{Ru} \max$ and $\mathrm{Pt} \max$ for $\mathrm{Fe} 415 \& \mathrm{M}_{30}$

Solution :- $\mathrm{M}_{30}=\mathbf{F c k}=\mathbf{3 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \text { Fy }}$

Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 415}=0.48$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 30 \times 0.48(1-0.42 \times 0.48)=4.14$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 30}{0.87 \times 415} \times 0.48 \times 100=1.44 \%$
7) From first principle calculate the values of Ku max, Ru max and $\mathrm{Pt} \max$ for $\mathrm{Fe} 500 \& \mathrm{M}_{20}$

Solution :- $\mathbf{M}_{\mathbf{2 0}}=\mathbf{F c k}=\mathbf{2 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{5 0 0}=\mathrm{Fy}=\mathbf{5 0 0} \mathrm{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \text { Fy }}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 500}=0.46$
2) Rumax or Mu lilmit $=0.36$ Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 20 \times 0.46(1-0.42 \times 0.46)=2.67$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 20}{0.87 \times 500} \times 0.46 X 100=0.76 \%$
8) From first principle calculate the values of $K u$ max, $R u$ max and $P t \max$ for $F \mathbf{F e n} \& \mathrm{M}_{25}$

Solution :- $\mathrm{M}_{25}=\mathbf{F c k}=\mathbf{2 5} \mathrm{N} / \mathrm{mm}^{2}$
Fe $\mathbf{5 0 0}=\mathbf{F y}=\mathbf{5 0 0} \mathbf{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \mathrm{Fy}}$

Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 500}=0.46$
2) Rumax or Mu lilmit= 0.36 Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 25 \times 0.46(1-0.42 \times 0.46)=3.34$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 25}{0.87 \times 500} \times 0.46 \times 100=0.95 \%$
9) From first principle calculate the values of Ku max, Ru max and Pt max for $\mathrm{Fe} 500 \& \mathrm{M}_{30}$

Solution :- $\mathrm{M}_{30}=\mathbf{F c k}=\mathbf{3 0} \mathrm{N} / \mathrm{mm}^{2}$
Fe $\mathbf{5 0 0}=\mathbf{F y}=\mathbf{5 0 0} \mathbf{N} / \mathrm{mm}^{2}$

1) Kumax $=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \text { Fy }}$
$\operatorname{Kumax}=\frac{\text { Xumax }}{d}=\frac{700}{1100+0.87 \times 500}=0.46$
2) Rumax or Mu lilmit $=0.36$ Fck Ku max (1-0.42 Ku max)

Rumax or Mu lilmit $=0.36 \times 30 \times 0.46(1-0.42 \times 0.46)=4.01$
3) $\operatorname{Ptmax}=\frac{0.36 \mathrm{Fck}}{0.87 \mathrm{Fy}} K u \max X 100$
$\operatorname{Ptmax}=\frac{0.36 \times 30}{0.87 \times 500} \times 0.46 \times 100=1.14 \%$

From Page No 70 IS CODE

Sr No	Grade of Steel	$\frac{\mathrm{Xu}}{\mathrm{d}} \max$
1	Fy 250	0.53
2	Fy 415	0.48
3	Fy 500	0.46

Moment of resistance for balance section From Page No 96 IS CODE

1) Grade of Steel = Fy 250
$\frac{\mathrm{Xu}}{\mathrm{d}} \max =0.53$
Mu lilmit $=0.36 \frac{X u \max }{d}\left(1-0.42 \frac{X u \max }{d}\right) b d^{2} F c k$
Mu limit $=0.36 \mathrm{X} 0.53 \mathrm{X}(1-0.42 \mathrm{X} 0.53) \mathrm{bd}^{2}$ Fck

Mu limit $=0.148$ Fck bd ${ }^{2}$
2) Grade of Steel = Fy 415
$\frac{\mathrm{Xu}}{\mathrm{d}} \max =0.48$
Mu lilmit $=0.36 \frac{X u \max }{d}\left(1-0.42 \frac{X u \max }{d}\right) b d^{2} F c k$

Mu limit $=0.36$ X 0.48 X (1-0.42 X 0.48) bd ${ }^{2}$ Fck

Mu limit $=0.138$ Fck bd 2
3) Grade of Steel = Fy 500

$$
\frac{\mathrm{Xu}}{\mathrm{~d}} \max =0.46
$$

Mu lilmit $=0.36 \frac{X u \max }{d}\left(1-0.42 \frac{X u \max }{d}\right) b d^{2} F c k$

Mu limit $=0.36 \mathrm{X} 0.46 \mathrm{X}(1-0.42 \mathrm{X} 0.46) \mathrm{bd}^{2}$ Fck

Mu limit $=0.133$ Fck bd ${ }^{2}$
Table:
Maximum depth of neutral axis (Xu max) and Moment of resistance

Sr No	Grade of Steel	$\frac{\mathrm{Xu}}{\mathrm{d}} \max$	Mu limit
$\mathbf{1}$	Fy 250	$\mathbf{0 . 5 3}$	Mu lilmit $=0.148$ Fck bd ${ }^{2}$
2	Fy 415	$\mathbf{0 . 4 8}$	Mu lilmit $=0.138$ Fck bd ${ }^{2}$
$\mathbf{3}$	Fy 500	$\mathbf{0 . 4 6}$	Mu lilmit $=0.133$ Fck bd ${ }^{2}$

Formulae

1. Compressive Force $(\mathrm{Cu})=0.36$ FckXub
2. Tensile Force $(\mathrm{Tu})=0.87$ Fy Ast
3. Lever $\operatorname{Arm}(Z)=d-0.42 \mathrm{Xu}$
4. Depth of neutral axis: $\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \mathrm{FyAst}}{0.36 \mathrm{Fckb}}$
5. Maximum depth of neutral axis

Sr No	Grade of Steel	Maximum depth of neutral axis (Xu max)
$\mathbf{1}$	Fy $\mathbf{2 5 0}$	$\mathbf{0 . 5 3 ~ d}$

2	Fy 415	0.48 d
3	Fy 500	0.46 d

6.Moment of resistance

Sr No	Grade of Steel	Maximum depth of neutral axis (Xu max)	Mu limit
$\mathbf{1}$	Fy 250	$\mathbf{0 . 5 3} \mathbf{~ d}$	Mu lilmit $=0.148$ Fck bd ${ }^{2}$
$\mathbf{2}$	Fy 415	$\mathbf{0 . 4 8} \mathbf{d}$	Mu lilmit $=0.138$ Fck bd ${ }^{2}$
$\mathbf{3}$	Fy 500	$\mathbf{0 . 4 6} \mathbf{~ d}$	Mu lilmit $=0.133$ Fck $b d^{2}$

7. Section formulae :

From Page No 96 IS CODE

1) Under reinforced Section
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu max)
2) Balanced Section
$\mathrm{Xu}=\mathrm{Xu} \max$
$\mathrm{Mu}=0.36$ Fck Xumax b (d- 0.42 Xu max)
3) Over reinforced Section
$\mathrm{Xu} \succ \mathrm{Xu} \max$
If any numerical having over reinforced section then that numerical design for under reinforced section.
IN SINGLY REINFORCED BEAM THERE ARE THREE TYPES OF PROBLEMS
4) To find moment of resistance of section
5) To find the area of steel
6) Design the section

Type I
To find moment of resistance of section
Stepwise Procedure
:To find :- The moment of resistance of section
Given Data:- b,d,,Ast, Fy, Fck
d = D - Effective cover
$\mathbf{d}=\mathbf{D}-\mathbf{d}^{\prime}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \mathrm{FyAst}}{0.36 \mathrm{Fckb}}$
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad For Fe 250
$\mathbf{X u} \max =\mathbf{0 . 4 8 ~ d}$ \qquad For Fe 415
$\mathrm{Xu} \max =0.46 \mathrm{~d}$ \qquad For Fe 500

STEP 3: To compare $\mathbf{X u}$ and Xu max
a) If $\mathrm{Xu} \prec \mathrm{Xu}$ max then section is under reinforced
b) If $\mathrm{Xu}=\mathrm{Xu}$ max then section is balance section
c) If $\mathrm{Xu} \succ \mathrm{Xu}$ max then section is over reinforced, if section is over reinforced then consider it as balance section.

STEP 4: To find moment of resistance
a) For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast $(\mathrm{d}-0.42 \mathrm{Xu})$
b) For balance section

Mulimit $=0.36$ Fck Xumax b (d- 0.42 Xu max)

STEP 5:

Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}$
Superimposed load $=$ Total working load - self weight of beam
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b$ X D X 25
Density of Concrete $=25 \mathrm{KN} / \mathrm{m}^{3}$

Examples

1) A reinforced concrete beam $250 \mathrm{~mm} \times 300 \mathrm{~mm}$ overall depth is reinforced with 3 bars of 12 mm diameter at the bottom. The clear cover of 25 mm , Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of $\mathbf{3} \mathbf{~ m}$. Used Fe 250 and \mathbf{M}_{15}.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{2 5 0} \mathbf{~ m m}$
$\mathrm{D}=\mathbf{3 0 0} \mathbf{~ m m}$
$\phi=12 \mathrm{~mm}$
No of bar $=3$
Clear cover $=25 \mathrm{~mm}$
$\mathbf{d}^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$

$$
\mathbf{d}^{\prime}=\text { Effective cover }=\mathbf{2 5}+\frac{12}{2}=31 \mathrm{~mm}
$$

Effective depth =d = D - d' = 300-31 =269 mm

$$
\text { Ast }=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 12^{2}=339.29 \mathrm{~mm}^{2}
$$

$\mathrm{L}=3 \mathrm{~m}$

$$
\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe $250=\mathrm{Fy}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 250 \times 339.29}{0.36 \times 15 \times 250}=54.66 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 5 3} \mathbf{d}$ \qquad .For Fe 250
$X u \max =0.53 \times 269=142.57 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu} \max$
$54.66 \prec 142.57$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d-0.42 Xu)
$\mathrm{Mu}=0.87 \times 250 \times 339.29(269-0.42 \times 54.66)=18.16 \times 10^{6} \mathrm{Nmm}=18.16 \mathrm{KNm}$
STEP 5: To find superimposed load

Maximum bending moment $=\frac{W u l^{2}}{8}=\frac{W u 3^{2}}{8}=1.125 \mathrm{Wu}$.
Equating (1) and (2)
$18.16=1.125 \mathrm{Wu}$
$\mathrm{Wu}=16.14 \mathrm{KN} / \mathrm{m}$

Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}=\frac{16.14}{1.5}=10.76 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b \operatorname{XDX} 25=(0.25 \times 0.3) X 25$
Self weight of beam $=1.875 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=10.76-1.875=8.885 \mathrm{KN} / \mathrm{m}$

2) A reinforced concrete beam $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ overall depth is reinforced with 4 bars of 12 mm diameter at the bottom. The clear cover of 25 mm , Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of $4 \mathbf{~ m}$. Used Fe 250 and M_{15}.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{2 5 0} \mathbf{~ m m}$
$D=400 \mathrm{~mm}$
$\phi=12 \mathrm{~mm}$
No of bar $=4$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{12}{2}=31 \mathrm{~mm}$
Effective depth $=\mathbf{d}=$ D $-\mathbf{d}^{\prime}=\mathbf{4 0 0} \mathbf{- 3 1}=\mathbf{3 6 9} \mathbf{~ m m}$

Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 12^{2}=452.39 \mathrm{~mm}^{2}$
$\mathrm{L}=4 \mathrm{~m}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{2 5 0}=\mathrm{Fy}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$

$$
0.36 \mathrm{FckXub}=0.87 \text { Fy Ast }
$$

$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 250 \times 452.39}{0.36 \times 15 \times 250}=72.89 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.53 \mathrm{~d}$ \qquad .For Fe 250
$X u \max =0.53 \times 369=195.57 \mathrm{~mm}$
STEP 3: To compare $\mathbf{X u}$ and Xu max
$\mathrm{Xu} \prec \mathrm{Xu} \max$
$72.89 \prec 195.57$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu$)$
$\mathrm{Mu}=0.87 \times 250 \times 452.39(369-0.42 \times 72.89)=33.30 \times 10^{6} \mathrm{Nmm}=33.30 \mathrm{KNm}$
STEP 5: To find superimposed load

Maximum bending moment $=\frac{W u 1^{2}}{8}=\frac{W u 4^{2}}{8}=2 \mathrm{Wu}$.
Equating (1) and (2)
$33.30=2 \mathrm{Wu}$
$\mathrm{Wu}=16.65 \mathrm{KN} / \mathrm{m}$
Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}=\frac{16.65}{1.5}=11.10 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b \times D X 25=(0.25 \times 0.4) \times 25$
Self weight of beam $=2.5 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=11.10-2.5=8.6 \mathrm{KN} / \mathrm{m}$

3) A reinforced concrete beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ overall depth is reinforced with 4 bars of 16 mm diameter on tension side with 40 mm effective cover. Calculate ultimate moment of resistance of section also find superimposed UDL over a simply supported span of 5 m . Used Fe 415 and M_{15}.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{3 0 0} \mathbf{~ m m}$
D $=\mathbf{5 0 0} \mathbf{~ m m}$
$\phi=16 \mathrm{~mm}$
No of bar $=4$
d'=Effective cover $=\mathbf{4 0} \mathbf{~ m m}$
Effective depth =d = D - d' = 500 -40=460 mm

$$
\text { Ast }=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 16^{2}=804.25 \mathrm{~mm}^{2}
$$

$\mathrm{L}=5 \mathrm{~m}$

$$
\mathrm{M}_{15}=\text { Fck }=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe $415=F y=415 N / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 804.25}{0.36 \times 15 \times 300}=179.24 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.48 \mathrm{~d}$ \qquad For Fe 415
$X u \max =0.48 \times 460=220.8 \mathrm{~mm}$
STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$179.24 \prec 220.8$
then section is under reinforced

STEP 4: To find moment of resistance
a) For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu$)$
$\mathrm{Mu}=0.87 \times 415 \times 804.25(460-0.42 \times 179.24)=111.71 \times 10^{6} \mathrm{Nmm}=111.71 \mathrm{KNm}$
\qquad
STEP 5: To find superimposed load

Maximum bending moment $=\frac{W u 1^{2}}{8}=\frac{W u 5^{2}}{8}=3.125 \mathrm{Wu}$

Equating (1) and(2)
$111.71=3.125 \mathrm{Wu}$
$\mathrm{Wu}=35.75 \mathrm{KN} / \mathrm{m}$

Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}=\frac{35.75}{1.5}=23.83 \mathrm{KN} / \mathrm{m}$

Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=\mathrm{b} X \mathrm{X} X 25=(0.3 \times 0.5) \times 25$

Self weight of beam $=3.75 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=23.83-3.75=20.08 \mathrm{KN} / \mathrm{m}$

4) A cantilever beam of span 2.5 m having width 200 mm and overall depth 400 mm provide with 4 bars of $\mathbf{1 2} \mathbf{~ m m}$ diameter on tension side. Calculate ultimate moment of resistance of section also find superimposed UDL with 40 mm effective cover. Used Fe 415 and M_{20}.

Solution:- To find :- The moment of resistance of section
Given Data:- b $=\mathbf{2 0 0} \mathbf{~ m m}$
$\mathrm{D}=\mathbf{4 0 0} \mathrm{mm}$
$\phi=12 \mathrm{~mm}$
No of bar $=4$
$d^{\prime}=$ Effective cover $=\mathbf{4 0} \mathbf{~ m m}$
Effective depth =d = D - d' = 400 -40=360 mm

$$
\text { Ast }=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 12^{2}=452.389 \mathrm{~mm}^{2}
$$

$\mathrm{L}=2.5 \mathrm{~m}$

$$
\mathrm{M}_{15}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe $415=F y=415 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 452.389}{0.36 \times 20 \times 200}=113.427 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.48 \mathrm{~d}$ \qquad For Fe 415
$X u \max =0.48 \times 360=172.80 \mathrm{~mm}$

STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max

$$
113.427 \prec 172.80
$$

then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu$)$
$\mathrm{Mu}=0.87 \times 415 \times 452.389(360-0.42 \times 113.427)=51.02 \times 10^{6} \mathrm{Nmm}=51.02 \mathrm{KNm}$
\qquad
STEP 5: To find superimposed load

Maximum bending moment $=\frac{W u l^{2}}{2}=\frac{W u \times 2.5^{2}}{2}=3.125 \mathrm{Wu}$.
Equating (1) and(2)
$51.02=3.125 \mathrm{Wu}$
$\mathrm{Wu}=16.33 \mathrm{KN} / \mathrm{m}$
Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}=\frac{16.33}{1.5}=10.88 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=$ b X D X 25 $=(0.2 \times 0.4) \times 25$
Self weight of beam $=2 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=10.88-2=8.88 \mathrm{KN} / \mathrm{m}$

5) A cantilever beam of span 2 m having width 250 mm and overall depth 400 mm provide with 3 bars of 12 mm diameter on tension side. Calculate ultimate moment of resistance of section also find superimposed UDL with 35 mm cover for centre of reinforcement. Used Fe 415 and \mathbf{M}_{20}.

Solution:- To find :- The moment of resistance of section
Given Data:- b $=\mathbf{2 5 0} \mathbf{~ m m}$
D $=\mathbf{4 0 0} \mathrm{mm}$
$\phi=12 \mathrm{~mm}$
No of bar $=3$
d'=Effective cover $=\mathbf{3 5} \mathbf{~ m m}$
Effective depth $=$ d $=$ D $-d^{\prime}=\mathbf{4 0 0} \mathbf{- 3 5}=\mathbf{3 6 5} \mathbf{m m}$

$$
\text { Ast }=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 12^{2}=339.29 \mathrm{~mm}^{2}
$$

$\mathrm{L}=2 \mathrm{~m}$

$$
\mathrm{M}_{15}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe $415=F y=415 N / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 339.29}{0.36 \times 20 \times 250}=68.09 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.48 \mathrm{~d}$ \qquad For Fe 415
$X u \max =0.48 \times 365=175.2 \mathrm{~mm}$

STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$68.06 \prec 175.20$
then section is under reinforced

STEP 4: To find moment of resistance

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 339.29(360-0.42 \times 68.06)=41.21 \times 10^{6} \mathrm{Nmm}=41.21 \mathrm{KNm}$

STEP 5: To find superimposed load

Maximum bending moment $=\frac{W u 1^{2}}{2}=\frac{W u \times 2^{2}}{2}=2 \mathrm{Wu}$.
Equating (1) and (2)
$41.21=2 \mathrm{Wu}$
$\mathrm{Wu}=20.605 \mathrm{KN} / \mathrm{m}$
Total ultimate load $=$ Working load X Load factor
Working load $=\frac{\text { Total Ultimate load }}{\text { Load factor }}=\frac{20.605}{1.5}=13.74 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=$ Cross sectional area X Density of Concrete
Self weight of beam $=b \times$ D X $25=(0.25 \times 0.4) \times 25$
Self weight of beam $=2.5 \mathrm{KN} / \mathrm{m}$
Superimposed load $=$ Total working load - self weight of beam
Superimposed load $=13.74-2.5=11.24 \mathrm{KN} / \mathrm{m}$

6) A reinforced concrete beam of rectangular section $230 \mathrm{~mm} \times 400 \mathrm{~mm}$ over all is reinforced with 4 bars of 12 mm diameter on tension side provided with clear cover 25 mm . Calculate ultimate moment of resistance of section and central point load in addition of self weight of beam, if it is simply supported over a span of $\mathbf{3 . 5} \mathbf{~ m}$. Use Fe $\mathbf{4 1 5}$ and $\mathbf{M}_{\mathbf{2 0}}$.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{2 3 0} \mathbf{~ m m}$
$D=400 \mathrm{~mm}$
$\phi=12 \mathrm{~mm}$
No of bar $=4$
Clear cover $=25 \mathrm{~mm}$
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
$\mathbf{d}^{\prime}=$ Effective cover $=\mathbf{2 5}+\frac{12}{2}=31 \mathrm{~mm}$
Effective depth =d = D - d' = 400 - $\mathbf{- 3 1}=\mathbf{3 6 9} \mathbf{~ m m}$

$$
\text { Ast }=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 12^{2}=452.389 \mathrm{~mm}^{2}
$$

$\mathrm{L}=3.5 \mathrm{~m}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 452.389}{0.36 \times 20 \times 230}=98.63 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.48 \mathrm{~d}$ \qquad For Fe 415
$\mathrm{Xu} \max =\mathbf{0 . 4 8 \times 3 6 9}=\mathbf{1 7 7 . 1 2} \mathbf{~ m m}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$98.63 \prec 177.120$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d-0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 452.389(369-0.42 \times 98.63)=53.5 \times 10^{6} \mathrm{Nmm}=53.50 \mathrm{KNm}$

STEP 5: Central point load in addition of self weight of beam

$\mathbf{M a x} \mathbf{B M}=\frac{W u 1^{2}}{8}+\frac{W c l}{4}$.
Self weight of beam $=b \mathrm{XD} \mathrm{X} 25=0.23 \times 0.4 \times 25=2.3 \mathrm{KN} / \mathrm{m}$
Factored self weight of beam $=\mathrm{Wu}=1.5 \times 2.3=3.45 \mathrm{KN} / \mathrm{m}$
Substitute all value in equation (2)
$53.50=\frac{3.45 \times 3.5^{2}}{8}+\frac{W c \times 3.5}{4}$
$\mathrm{Wc}=55.109 \mathrm{KN}$

7) A reinforced concrete beam of rectangular section $300 \mathrm{~mm} \times 350 \mathrm{~mm}$ over all is reinforced with 3 bars of 12 mm diameter on tension side provided with effective cover 35 mm . Calculate ultimate moment of resistance of section and central point load in addition of self weight of beam, if it is simply supported over a span of $\mathbf{5 m}$. Use $\mathbf{F e} 500$ and M_{25}.

Solution:- To find :- The moment of resistance of section
Given Data:- b = $\mathbf{3 0 0} \mathbf{~ m m}$
D $=\mathbf{3 5 0} \mathbf{~ m m}$
$\phi=12 \mathrm{~mm}$
No of bar $=3$
$d^{\prime}=$ Effective cover $=35 \mathrm{~mm}$

Effective depth $=\mathbf{d}=\mathbf{D}-\mathbf{d}^{\prime}=\mathbf{3 5 0} \mathbf{- 3 5}=\mathbf{3 1 5} \mathbf{m m}$

Ast $=3 \times \frac{\pi}{4} \times \phi^{2}=3 \times \frac{\pi}{4} \times 12^{2}=339.29 \mathrm{~mm}^{2}$
$\mathrm{L}=5 \mathrm{~m}$
$\mathrm{M}_{25}=\mathrm{Fck}=\mathbf{2 5} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{5 0 0}=\mathbf{F y}=\mathbf{5 0 0} \mathbf{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

1. $\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 500 \times 339.29}{0.36 \times 25 \times 300}=54.66 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.46 \mathrm{~d}$ \qquad .For Fe 500
$X u \max =0.46 \times 315=144.9 \mathrm{~mm}$
STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$54.66 \prec 144.90$
then section is under reinforced
STEP 4: To find moment of resistance
For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d-0.42 Xu)
$\mathrm{Mu}=0.87 \times 500 \times 339.29(315-0.42 \times 54.66)=43.40 \times 10^{6} \mathrm{Nmm}=43.10 \mathrm{KNm}$
STEP 5: Central point load in addition of self weight of beam

$\mathbf{M a x} \mathbf{B M}=\frac{W u 1^{2}}{8}+\frac{W c l}{4}$
Self weight of beam $=b$ XD X25 $=0.3 \times 0.35 \times 25=2.63 \mathrm{KN} / \mathrm{m}$
Factored self weight of beam $=\mathrm{Wu}=1.5 \times 2.63=3.94 \mathrm{KN} / \mathrm{m}$
Substitute all value in equation (2)
$4310=\frac{3.94 \times 5^{2}}{8}+\frac{W c \times 5}{4}$
$\mathrm{Wc}=24.63 \mathrm{KN}$

Type II :- To find area of steel (Ast)
Stepwise Procedure
To find :- The area of steel (Ast)
Given Data:- b,d, Fy, Fck, Design Moment (\mathbf{M}_{d})
Effective depth =d = D - Effective cover
Effective depth $=\mathbf{d}=\mathbf{D}-\mathbf{d}^{\prime}$
Effective cover $=$ Clear cover $+\frac{\phi}{2}$
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.148$ Fck $b d^{2}$ Fe 250

Mu lilmit $=0.138$ Fck bd ${ }^{2}$ Fe 415

Mu lilmit $=0.133$ Fck bd ${ }^{2}$
STEP 2: To compare M_{d} and $M_{U \text { limit }}$
$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
$\mathbf{M}_{\mathrm{d}}=\mathbf{M}_{\mathrm{U} \text { limit }}$ section is Balanced Section
$\mathbf{M}_{\mathrm{d}} \succ \mathbf{M}_{\text {U limit }}$ Section is Over reinforced Section
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}$

EXAMPLES:

1) Calculate the area of steel required for the singly reinforced beam 230 mm wide and $\mathbf{4 0 0} \mathrm{mm}$

Solution:- Given data
b $=\mathbf{2 3 0} \mathbf{~ m m}$
D $=400 \mathrm{~mm}$
$\mathrm{d}^{\prime}=\mathbf{4 0} \mathrm{mm}$

Effective depth $=$ d= D-d' $=\mathbf{4 0 0}-\mathbf{4 0}=\mathbf{3 6 0} \mathbf{~ m m}$
$M_{d}=60 \mathrm{KNm}=60 \times 10^{6} \mathrm{Nmm}$
Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{F y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.148$ Fck bd ${ }^{2}$ Fe 250

Mu lilmit $=0.148 \times 15 \times 230 \times 360^{2}=66.17 \times 10^{6} \mathrm{~N} . \mathrm{mm}=66.17 \mathrm{KNm}$
STEP 2: To compare M_{d} and $M_{U \text { limit }}$
$60 \prec 66.17$
$\mathbf{M}_{\mathrm{d}} \prec \mathbf{M}_{\mathrm{U} \text { limit }}$ section is Under reinforced Section
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel

$$
\begin{aligned}
& A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd} \\
& A_{s t}=\frac{0.5 \times 15}{250}\left[1-\sqrt{1-\frac{4.6 \times 60 \times 10^{6}}{15 \times 230 \times 360^{2}}}\right] 230 \times 360=947.30 \mathrm{~mm}^{2}
\end{aligned}
$$

Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{947.30}{(\pi / 4) \times 20^{2}}=3.01 \cong 3$

2) Calculate the area of steel required for the singly reinforced beam $\mathbf{2 3 0} \mathbf{~ m m}$ wide and 650 mm effective carrying working moment of 130 KNm . Use M_{15} and Fe 415.

Solution:- Given data
$b=230 \mathrm{~mm}$

Effective depth $=\mathbf{d}=\mathbf{6 5 0} \mathbf{~ m m}$
Working Moment=130 KNm
Design Moment $=M_{d}=130 \times 1.5=195 \mathrm{KNm}=195 \times 10^{6} \mathrm{Nmm}$
Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$F y=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: Calculate ultimate moment of resistance

Mu lilmit $=0.138 F c k b d^{2}$

Mu lilmit $=0.138 \times 15 \times 230 \times 650^{2}=201.15 \times 10^{6} \mathrm{~N} . \mathrm{mm}=201.15 \mathrm{KNm}$

STEP 2: To compare M_{d} and $M_{U \text { limit }}$
$195 \prec 201.15$
$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel
$A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}$
$A_{s t}=\frac{0.5 \times 15}{415}\left[1-\sqrt{1-\frac{4.6 \times 195 \times 10^{6}}{15 \times 230 \times 650^{2}}}\right] 230 \times 650=1026.22 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=16 \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1026.22}{(\pi / 4) \times 16^{2}}=5.10 \cong 5$

Ast $=\mathbf{5 \# 1 6}$
3) A reinforced concrete beam of rectangular section 230 mm X 400 mm overall , the clear cover is 25 mm . The beam is carrying UDL of $24 \mathrm{KN} / \mathrm{m}$ including self weight over a span of 3.5 m . Find the area of steel required, Use M_{20} and Fe 415.

Solution:- Given data

$b=\mathbf{2 3 0} \mathbf{~ m m}$
D $=\mathbf{4 0 0} \mathrm{mm}$
Assuming $\phi=20 \mathrm{~mm}$
Clear cover $=25 \mathrm{~mm}$
Effective cover $=d^{\prime}=$ Clear cover $+\frac{\phi}{2}$
Effective cover $=d^{\prime}=\mathbf{2 5}+\frac{\mathbf{2 0}}{2}=35 \mathrm{~mm}$
$d=D-d^{\prime}=\mathbf{4 0 0} \mathbf{- 3 5}=\mathbf{3 6 5} \mathrm{mm}$
Fck $=\mathbf{2 0} \mathbf{N} / \mathrm{mm}^{2}$
$\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
UDL W=24 KN/m
Factored UDL $=\mathbf{W u}=1.5 \times 24=36 \mathrm{KN} / \mathrm{m}$
Assuming simply supported beam
Maximum bending moment $=\mathbf{M}_{\mathrm{d}}=\frac{W u \mathrm{l}^{2}}{8}=\frac{36 \times 3.5^{2}}{8}=55.125 \mathrm{KNm}$
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.138$ Fck bd ${ }^{2}$ \qquad Fe 415

Mu lilmit $=0.138 \times 20 \times 230 \times 365^{2}=84.57 \times 10^{6} \mathrm{~N} . \mathrm{mm}=84.57 \mathrm{KNm}$
STEP 2: To compare M_{d} and $M_{U \text { limit }}$
$\mathbf{5 5 . 1 2 5} \prec 84.57$
$\mathbf{M}_{\mathrm{d}} \prec \mathbf{M}_{\text {U limit }}$ section is Under reinforced Section
STEP 3: Equating M_{D} and $M_{U \text { limit }}$ and calculate area of steel
$A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}$

$$
A_{s t}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 55.125 \times 10^{6}}{20 \times 230 \times 365^{2}}}\right] 230 \times 365=474.06 \mathrm{~mm}^{2}
$$

Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$ (Allready assumed)
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{474.06}{(\pi / 4) \times 20^{2}}=1.51 \cong 2$

Type III :- To design of beam
Stepwise Procedure
To design of beam
Given Data:- \mathbf{M}_{d}, Fy, Fck
To find :- b,d,Ast
d = D - Effective cover
Effective depth =d = D - d'
Effective cover $=$ Clear cover $+\frac{\phi}{2}$

STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.148 F c k b d^{2}$ \qquad Fe 250

Mu lilmit $=0.138 F c k b d^{2}$ \qquad

Mu lilmit $=0.133 F c k b d^{2}$

STEP 2: Equating Mulimit to M_{d}

Assuming the value of " b " and find " d " or take minimum value of " b " $=230 \mathbf{m m}$ or " b " = d/2
STEP 3: To find area of steel
a) For balance section
$\mathrm{M}_{\mathrm{d}}=0.87$ Fy Ast (d-0.42 Xu max)
To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad .For Fe 250
$X u \max =0.48 \mathrm{~d}$ \qquad .For Fe 415
$\mathrm{Xu} \max =0.46 \mathrm{~d}$ \qquad .For Fe 500

$$
\begin{gathered}
\text { or } \\
A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}
\end{gathered}
$$

To find minimum area of steel Ast (From page No. 47 and cl no 26.5.1.1 IS CODE)
Compare Ast with Ast minimum
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{~b} \mathrm{~d}}{\mathrm{Fy}}$
STEP 4 :Number of bars
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

1) Design a rectangular beam to resist a ultimate moment of $\mathbf{1 0 0} \mathbf{K N m}$, using M_{20} and Fe 415 .

Solution:-

To design of beam
Given Data:- $M_{d}=100 \mathrm{KNm}=100 \times 10^{6} \mathbf{~ N m m}$
$\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Assuming 'b" $\mathbf{= 2 3 0} \mathbf{~ m m}$
To find :- d,Ast
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.138 F c k b d^{2}$ \qquad

Mu lilmit $=0.138 \times 20 \times 230 d^{2}$
Mu lilmit $=634.8 d^{2}$
STEP 2: Equating Mulimit to M_{d}
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
$\mathbf{M}_{\mathrm{d}}=$ Mulimit
$100 \times 10^{6}=634.8 \mathrm{~d}^{2}$
$\mathrm{d}=\mathbf{3 9 6 . 9 0} \mathbf{~ m m}$
Effective depth $=\mathbf{d} \cong \mathbf{4 0 0} \mathbf{~ m m}$
STEP 3: To find area of steel
a) For balance section
$M_{d}=0.87$ Fy Ast (d- 0.42 Xu max)
$\mathrm{Xu} \max =\mathbf{0 . 4 8} \mathbf{d}$ \qquad .For Fe 415
$X u \max =0.48 \times 400=192 \mathrm{~mm}$
$100 \times 10^{6}=0.87 \times 415 \times \operatorname{Ast}(400-0.42 \times 192)$
Ast $=867.27 \mathrm{~mm}^{2}$
Compare Ast with Ast minimum
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{~b} \mathrm{~d}}{\mathrm{Fy}}$.

$$
\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \times 230 \times 400}{415}=188.43 \mathrm{~mm}^{2}
$$

Ast \succ Ast Min
STEP 4: Number of bars
Assuming diameter of bar $=\phi=16 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{867.27}{(\pi / 4) \times 16^{2}}=4.31 \cong \mathbf{5}$

2) A simply supported beam 4 m span subjected to central point load of 60 KN . Design the beam section using M_{20} and Fe 415.

To design of beam
Given Data:- $\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~L}=4 \mathrm{~m}$

Working load $=\mathbf{W}=\mathbf{6 0} \mathbf{K N}$
Factored load $=\mathbf{W u}=60 \times 1.5=90 \mathrm{KN}$

$\operatorname{Max} B M=(W L / 4)=(90 \times 4) / 4=90 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{d}}=\mathbf{9 0} \times 10^{6} \mathrm{Nmm}$
Assuming 'b" = 230 mm

To find :- b,d,,Ast
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.138$ Fck bd ${ }^{2}$ \qquad Fe 415

Mu lilmit $=0.138 \times 20 \times 230 d^{2}$
Mu lilmit $=634.8 d^{2}$
STEP 2: Equating Mulimit to M_{d}
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
$\mathbf{M}_{\mathrm{d}}=$ Mulimit
$90 \times 10^{6}=634.8 \mathrm{~d}^{2}$
$\mathrm{d}=\mathbf{3 7 6 . 5 3 2} \mathbf{~ m m}$
Effective depth $=\mathbf{d} \cong \mathbf{3 8 0} \mathbf{m m}$
STEP 3: To find area of steel
a) For balance section
$\mathbf{M}_{\mathrm{d}}=0.87$ Fy Ast (d-0.42 Xu max)
$X u \max =0.48 \mathrm{~d}$ \qquad .For Fe 415
$X u \max =0.48 \times 380=182.4 \mathrm{~mm}$
$90 \times 10^{6}=0.87 \times 415 \times$ Ast ($380-0.42 \times 182.4$)

Ast $=821.62 \mathrm{~mm}^{2}$
Compare Ast with Ast minimum

$A_{s t \min }=\frac{0.85 \times 230 \times 380}{415}=179.01 \mathrm{~mm}^{2}$

Ast \succ Ast Min (ok)

STEP 4: Number of bars

Assuming diameter of bar $=\phi=16 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

Number of bars $=\frac{821.62}{(\pi / 4) \times 16^{2}}=4.08 \cong 4$

3) A simply supported beam 5 m span subjected to working UDL of $30 \mathrm{KN} / \mathrm{m}$. Design the beam section using M_{20} and Fe 415.

To design of beam
Given Data:- $\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Fck $=\mathbf{2 0} \mathbf{N} / \mathrm{mm}^{2}, \mathrm{~L}=\mathbf{5} \mathrm{m}$
Working UDL $=\mathbf{W}=30 \mathrm{KN} / \mathrm{m}$
Factored UDL $=\mathbf{W u}=30 \times 1.5=\mathbf{4 5} \mathrm{KN} / \mathrm{m}$

Max BM $=\left(\mathrm{WL}^{2} / \mathbf{8}\right)=\left(\mathbf{4 5} \mathbf{X 5} \mathbf{5}^{2}\right) / 8=140.625 \mathrm{KNm}$
$M_{d}=140.625 \times 10^{6} \mathrm{Nmm}$
Assuming 'b" = 230 mm

To find :- b,d,,Ast
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.138$ Fck bd ${ }^{2}$ \qquad
Mu lilmit $=0.138 \times 20 \times 230 d^{2}$
Mu lilmit $=634.8 d^{2}$
STEP 2: Equating Mulimit to M_{d}
$\mathrm{b}=\mathbf{2 3 0} \mathbf{~ m m}$
$\mathbf{M}_{\mathrm{d}}=$ Mulimit
$140.625 \times 10^{6}=634.8 \mathrm{~d}^{2}$
$\mathrm{d}=\mathbf{4 7 0 . 6 6 5} \mathrm{mm}$
Effective depth $=\mathbf{d} \cong 480 \mathrm{~mm}$
STEP 3: To find area of steel
a) For balance section
$\mathrm{M}_{\mathrm{d}}=0.87$ Fy Ast (d- 0.42 Xu max)
$\mathbf{X u} \max =\mathbf{0 . 4 8 ~ d}$ \qquad .For Fe 415
$X u \max =0.48 \times 480=230.4 \mathbf{~ m m}$
$140.625 \times 10^{6}=0.87 \times 415 \times$ Ast ($\left.480-0.42 \times 230.4\right)$
$\mathrm{A}_{\mathrm{st}}=\mathbf{1 0 1 6 . 3 2} \mathbf{~ m m}^{2}$
Compare Ast with Ast minimum
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{bd}}{\mathrm{Fy}}$.
$\mathrm{A}_{\text {st min }}=\frac{0.85 \times 230 \times 480}{415}=226.120 \mathrm{~mm}^{2}$
Ast \succ Ast Min
STEP 4: Number of bars
Assuming diameter of bar $=\phi=16 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{1016.32}{(\pi / 4) \times 16^{2}}=5.05 \cong 5$

4) Design under reinforced section to resist factored BM of 125 KNm having width 250 mm using M_{20} and Fe 250.

To design of beam
Given Data:- $\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$,

Max BM $=125$ KNm
$\mathrm{M}_{\mathrm{d}}=125 \times 10^{6} \mathbf{N m m}$
"b" = 250 mm
To find :- d, Ast
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.148 \mathrm{Fck} b d^{2}$ \qquad Fe 250

Mu lilmit $=0.148 \times 20 \times 250 d^{2}$
Mu lilmit $=740 d^{2}$
STEP 2: Equating Mulimit to M_{d}
$\mathbf{M}_{\mathrm{d}}=$ Mulimit
$125 \times 10^{6}=740 \mathrm{~d}^{2}$
$\mathrm{d}=\mathbf{4 1 0 . 9 9 \mathrm { mm }}$
Effective depth $=\mathbf{d} \cong \mathbf{4 2 0} \mathbf{~ m m}$
STEP 3: To find area of steel
a) For balance section
$\mathrm{M}_{\mathrm{d}}=0.87$ Fy Ast (d- 0.42 Xu max)
$\mathbf{X u} \max =0.53 \mathrm{~d}$ \qquad .For Fe 250
$X u \max =0.53 \times 420=222.6 \mathrm{~mm}$
$125 \times 10^{6}=0.87 \times 250 \times \operatorname{Ast}(420-0.42 \times 222.6)$
$A_{\text {st }}=\mathbf{1 7 6 0 . 1 8} \mathbf{~ m m}^{2}$
Compare Ast with Ast minimum
$\mathrm{A}_{\mathrm{st} \text { min }}=\frac{0.85 \mathrm{~b} \mathrm{~d}}{\mathrm{Fy}}$
$\mathrm{A}_{\mathrm{st} \text { min }}=\frac{0.85 \times 250 \times 420}{250}=357 \mathrm{~mm}^{2}$
Ast \succ Ast Min
(ok)

STEP 4:Number of bars

Assuming diameter of bar $=\phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{1760.18}{(\pi / 4) \times 20^{2}}=5.60 \cong \mathbf{6}$

5) Design under reinforced section to resist factored BM of $\mathbf{7 5} \mathbf{K N m}$ having width 230 mm using M_{15} and Fe 500.

To design of beam
Given Data:- $\mathbf{F y}=\mathbf{5 0 0} \mathbf{N} / \mathrm{mm}^{2}$
Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$,
Max $B M=75 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{d}}=75 \times 10^{6} \mathrm{Nmm}$
'b" = 230 mm

To find :- d, Ast
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.133$ Fck bd ${ }^{2}$ \qquad Fe 500

Mu lilmit $=0.133 \times 15 \times 230 d^{2}$
Mu lilmit $=458.85 d^{2}$
STEP 2: Equating Mulimit to $\mathbf{M}_{\mathbf{d}}$
$\mathbf{M}_{\mathrm{d}}=$ Mulimit
$75 \times 10^{6}=458.85 \mathrm{~d}^{2}$
$\mathrm{d}=\mathbf{4 0 4 . 2 9 \mathrm { mm }}$
Effective depth $=\mathbf{d} \cong \mathbf{4 1 0} \mathrm{mm}$
STEP 3: To find area of steel
a) For balance section
$\mathrm{M}_{\mathrm{d}}=0.87$ Fy Ast (d- 0.42 Xu max)
Xu max $=0.46 \mathrm{~d}$ \qquad For Fe 500
$X u \max =0.46 \times 410=188.6 \mathbf{m m}$
$75 \times 10^{6}=0.87 \times 500 \times \operatorname{Ast}(41-0.42 \times 188.6)$
$\mathrm{A}_{\mathrm{st}}=\mathbf{5 2 1 . 2 2} \mathbf{~ m m}^{\mathbf{2}}$
Compare Ast with Ast minimum
$\mathrm{A}_{\mathrm{st} \text { min }}=\frac{0.85 \mathrm{~b} \mathrm{~d}}{\mathrm{Fy}}$.
$\mathrm{A}_{\text {st min }}=\frac{0.85 \times 230 \times 410}{500}=160.31 \mathrm{~mm}^{2}$
Ast \succ Ast Min
(ok)

STEP 4:Number of bars
Assuming diameter of bar $=\phi=20 \mathrm{~mm}$

Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{521.22}{(\pi / 4) \times 20^{2}}=1.66 \cong \mathbf{2}$

6) To design a rectangular section to resist a factored moment of $\mathbf{9 0} \mathbf{K N m}$
a) The Xu should not be greater than 0.3 d
b) $\mathrm{Mu}=1.785 \mathrm{~b} \mathrm{~d}^{2}$
assuming $b=300 \mathbf{m m}$ use M_{15} and $\mathbf{F e} 415$.
Solution :- b=300 mm
$M_{d}=90 \mathrm{KNm}=90 \times 10^{6} \mathrm{Nmm}$

$$
\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
CASE I:- The Xu should not be greater than $\mathbf{0 . 3} \mathbf{d}$
STEP 1: To find depth of neutral axis (From page No. 96 IS CODE)

1. The Xu should not be greater than $\mathbf{0 . 3} \mathbf{d}$

Assuming $\mathrm{Xu}=0.3 \mathrm{~d}$
2. $X u \max =0.48 d$ \qquad .For Fe 415
3. Comparing Xu and Xu max
$\mathrm{Xu}<\mathrm{Xu} \max$
$0.3 \mathrm{~d}<0.48 \mathrm{~d}$
The section is under reinforced
4. $\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$0.3 \mathrm{~d}=\frac{0.87 \times 415 \times \text { Ast }}{0.36 \times 15 \times 300}$
Ast $=1.346 \mathrm{~d}$
5: To find moment of resistance
a) For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast (d-0.42 Xu)
$90 \times 10^{6}=0.87 \times 415 \times 1.346 \mathrm{~d}(\mathrm{~d}-0.42 \times 0.3 \mathrm{~d})$
Effective depth $=d=460.32 \mathrm{~mm} \cong 470 \mathrm{~mm}$
Ast $=1.346 \times 470=632.62 \mathrm{~mm}^{2}$
Number of bars
Assuming diameter of bar $=\phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{632.62}{(\pi / 4) \times 20^{2}}=2.01 \cong \mathbf{2}$

CASE II:- Mu = 1.785 b d ${ }^{2}$
STEP 1: Calculate ultimate moment of resistance

Mu lilmit $=0.138 \times 15 \times$ b X d ${ }^{2}=2.07$ bd 2

STEP 2: To compare M_{d} and $M_{U \text { limit }}$
1.785 b d $^{2} \prec 2.07$ bd 2
$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
$\mathrm{Mu}=1.785 \mathrm{~b} \mathrm{~d}^{\mathbf{2}}$
$90 \times 10^{6}=1.785 \times 300 \times \mathrm{d}^{2}$
$\mathbf{d}=409.96 \mathrm{~mm} \cong 410 \mathrm{~mm}$
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel
$A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}$
$A_{s t}=\frac{0.5 \times 15}{415}\left[1-\sqrt{1-\frac{4.6 \times 90 \times 10^{6}}{15 \times 300 \times 410^{2}}}\right] 300 \times 410=727.25 \mathrm{~mm}^{2}$

STEP 4: Number of bars
Assuming diameter of bar $=\phi=20 \mathrm{~mm}$

Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

Number of bars $=\frac{727.25}{(\pi / 4) \times 20^{2}}=2.31 \cong 3$
7) A fixed beam of a span 5 m carries superimposed load of $19 \mathrm{KN} / \mathrm{m}$ over a whole span assuming rectangular cross section $230 \mathrm{~mm} \times 450 \mathrm{~mm}$. Find the area of steel required at mid span and at the support. Take effective cover 50 mm . use M_{20} and Fe 250 .

Solution :-b=230 mm
$D=450 \mathrm{~mm}$
$\mathrm{d}^{\prime}=\mathbf{5 0} \mathbf{~ m m}$

Effective depth =d = D- d' = 450-50 = 400 mm
superimposed load $=19 \mathrm{KN} / \mathrm{m}$
Span $=\mathbf{L}=\mathbf{5} \mathbf{m}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{\mathbf{2}}$
$\mathrm{Fe} 250=\mathrm{Fy}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
Self weight of beam $=b \times D \times 25=0.23 \times .45 \times 25=2.5875 \mathrm{KN} / \mathrm{m}$
Total load on beam $=$ Superimposed load + Self weight of beam
Total load on beam $=19+2.5875=21.5875 \mathrm{KN} / \mathrm{m}$

Total factored load on beam $=W u=1.5 \times 21.5875=32.381 \mathrm{KN} / \mathrm{m}$

BM at support $=\frac{W u l^{2}}{12}=\frac{32.381 \times 5^{2}}{12}=67.44 \mathrm{KN} \mathrm{m}$

BM at mid span $=\frac{W u 1^{2}}{8}-\frac{W u 1^{2}}{12}=\frac{32.381 \times 5^{2}}{8}-\frac{32.381 \times 5^{2}}{12}=33.75 \mathrm{KN} \mathrm{m}$
$B M$ at support $M_{d}=67.44 \mathrm{KN} \mathrm{m}$
STEP 1: Calculate ultimate moment of resistance

Mu lilmit $=0.148 \times 20 \times 230 \times 400^{2}=108.93 \times 10^{6} \mathrm{KNm}=108.93 \mathrm{KN} \mathrm{m}$
STEP 2: To compare M_{d} and $M_{U \text { limit }}$
$67.44 \prec 108.93$
$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel

$$
\begin{aligned}
& A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd} \\
& A_{s t}=\frac{0.5 \times 20}{250}\left[1-\sqrt{1-\frac{4.6 \times 67.46 \times 10^{6}}{20 \times 230 \times 400^{2}}}\right] 230 \times 400=881.32 \mathrm{~mm}^{2}
\end{aligned}
$$

STEP 4:Number of bars

Assuming diameter of bar $=\phi=20 \mathrm{~mm}$

Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

Number of bars $=\frac{881.32}{(\pi / 4) \times 20^{2}}=2.81 \cong \mathbf{3}$
$B M$ at mid span design $B M=M_{d}=33.75 \mathrm{KN} \mathrm{m}$
STEP 1: To compare M_{d} and $M_{U \text { limit }}$

$$
\mathbf{3 3 . 7 5} \prec 108.93
$$

$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
STEP 2: Equating M_{D} and $M_{U \text { limit }}$ and calculate area of steel

$$
\begin{aligned}
& A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd} \\
& A_{s t}=\frac{0.5 \times 20}{250}\left[1-\sqrt{1-\frac{4.6 \times 33.75 \times 10^{6}}{20 \times 230 \times 400^{2}}}\right] 230 \times 400=411.09 \mathrm{~mm}^{2}
\end{aligned}
$$

STEP 3:Number of bars
Assuming diameter of bar $=\phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{411.09}{(\pi / 4) \times 20^{2}} \quad=1.31 \cong \mathbf{2}$
8) Design a RC singly reinforced rectangular section for the span of 5 m with both ends fixed carries udl of $15 \mathrm{KN} / \mathrm{m}$ acting on whole span inclusive self weight. Use M_{20} and Fe 415.

Solution :-

udl $=15 \mathrm{KN} / \mathrm{m}$
Span $=\mathbf{L}=\mathbf{5} \mathbf{m}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
Total factored udl on beam $=1.5 \times 15=22.5 \mathrm{KN} / \mathrm{m}$

BM at support $=\frac{W u 1^{2}}{12}=\frac{22.5 \times 5^{2}}{12}=46.88 \mathrm{KN} \mathrm{m}$
Maximum BM $\mathrm{M}_{\mathrm{d}}=46.88 \mathrm{KN}$ m
STEP 1: Calculate ultimate moment of resistance
Mu lilmit $=0.138$ Fck bd ${ }^{2}$ Fe 415

Assuming $\mathrm{b}=230 \mathrm{~mm}$
$0.138 \times 20 \times 230 \mathrm{Xd}^{2}$

STEP 1: To compare M_{D} and $M_{U \text { limit }}$
$46.88 \times 10^{6}=0.138 \times 20 \times 230 \mathrm{X} \mathrm{d}^{2}$
Effective depth $=\mathrm{d}=271.74 \mathrm{~mm} \cong 280 \mathrm{~mm}$
$\mathbf{M}_{\mathrm{d}} \prec \mathbf{M}_{\mathrm{U} \text { limit }}$ section is Under reinforced Section
STEP 3: Equating M_{d} and $M_{U \text { limit }}$ and calculate area of steel
$A_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckbd}^{2}}}\right] \mathrm{bd}$
$A_{s t}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 46.8745 \times 10^{6}}{20 \times 230 \times 280^{2}}}\right] 230 \times 280=567.78 \mathrm{~mm}^{2}$
STEP 4:Number of bars
Assuming diameter of bar $=\phi=20 \mathrm{~mm}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
Number of bars $=\frac{567.78}{(\pi / 4) \times 20^{2}}=1.81 \cong \mathbf{2}$

Doubly Reinforced Beams

Doubly Reinforced Beams :- These are those section in which R/F is provided on tension as well as compression side.
Condition for doubly reinforced section:-

1. When section are restricted due to architectural consideration.
2. To reduce deflection of beam
3. In the continuous beam at intermediate support, the beam is design doubly reinforced beam.
4. The member which are subjected to reversal of stress.
5. In case of vibration in structures.

DESIGN PROCEDURE FOR DOUBLY REINFORCED BEAM

DOUBLY REINFORCED BEAM

A doubly reinforced beam section is normally provided when a given concrete structure with maximum steel Ast on tension is in adequate resist to given design moment. The inadequacy is made up by adding the steel on tension side equal to Ast ${ }_{2}$ but also adding steel on compression Asc.
Balance section with concrete for resisting compression and balance tension steel Ast ${ }_{1}$ resisting tension.

STRESS STRAIN DIAGRAM \& FORCE DIAGRAM FOR DOUBLY REINFORCED BEAM
$\mathrm{Cu}_{1}=$ Compressive force in concrete
$\mathrm{Cu}_{1}=0.36$ Fck Xu b
$\mathrm{Cu}_{2}=$ Compressive force in compressive steel
$\mathrm{Cu}_{2}=\mathrm{Asc}(\mathrm{Fsc}-\mathrm{Fcc})$
Fsc $=$ Stress in compressive steel
Fsc $=0.85 \mathrm{Fy}$
Fcc $=$ Stress in concrete at level of d'
Fcc $=0.45$ Fck
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
where,
$\mathrm{Z}_{1}=(\mathrm{d}-0.42 \mathrm{Xu})$
$\mathrm{Z}_{2}=\left(\mathrm{d}-\mathrm{d}^{\prime}\right)$
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b 1 (d-0.42 Xu) + Asc ($\mathrm{Fsc}-\mathrm{Fcc}$) (d-d')

IN DOUBLY REINFORCED BEAM THERE ARE THREE TYPES OF PROBLEMS

1) To find moment of resistance of section
2) To find the area of steel i.e (Asc and Ast)
3) Design the section

TYPE I

1) To find moment of resistance of section

CASE I : - If Fe 250 is given in numerical

STEPWISE PROCESURE
STEP 1: Given Data
b, d, d', Asc ,Ast, Fck, Fy
STEP 2: To find depth of neutral axis (Xu)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{Cu}_{1}+\mathrm{Cu}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc $($ Fsc - Fcc $)=0.87$ Fy Ast
$\mathbf{X u}=$?
Fsc $=$ Stress in compressive steel
Fsc $=0.85 \mathrm{Fy}$ Fe 250
Fcc $=$ Stress in concrete at level of d'
Fcc $=0.45 \mathrm{Fck}$
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d-0.42 Xu) + Asc (Fsc - Fcc) (d-d')

1) Find moment of resistance of rectangular section 300 mm X 380 mm effective with $\mathbf{6}$ bars of 20 $\mathbf{m m}$ diameter on tension side and 2 bars of $\mathbf{2 0} \mathbf{~ m m}$ diameter on compressive side and effective cover is $\mathbf{4 0} \mathbf{~ m m}$. Use M_{15} and $\mathbf{F e} 250$.

Solution:-

STEP 1: -Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{3 0 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{3 8 0} \mathbf{~ m m}$
Effective cover $=d^{\prime}=\mathbf{4 0} \mathbf{~ m m}$
Number of bar on tension side $=6$
Area of steel on tension side $=\mathbf{A s t}=6 \times \frac{\pi}{4} X \quad \phi^{2}=6 X \quad \frac{\pi}{4} X \quad 20^{2}=1884.95 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$

Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \mathbf{X} \quad \frac{\pi}{4} X \phi^{2}=2 \times \frac{\pi}{4} \times 20^{2}=628.32 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{F e} \mathbf{2 5 0}=\mathbf{F y}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45 \mathrm{Fck}=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fsc $=0.87 \mathrm{Fy}=0.87 \mathrm{X} 250=217.5 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{Cu}_{1}+\mathrm{Cu}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc (Fsc -Fcc) $=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 15 \mathrm{x} \mathrm{Xu} x 300+628.32 \mathrm{x}(217.5-6.75)=0.87 \times 250 \mathrm{x} 1884.95$
$\mathrm{Xu}=171.33 \mathrm{~mm}$
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d- 0.42 Xu$)+$ Asc (Fsc - Fcc) $(\mathrm{d}-\mathrm{d}$ ')
$\mathrm{Mu}=0.36 \times 15 \times 171.33 \times 300(380-0.42 \times 171.33)+628.32 \times(217.5-6.75)(380-40)$
$\mathrm{Mu}=130.52 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=130.52 \mathrm{KNm}$
2) Find moment of resistance of rectangular section $230 \mathrm{~mm} \times 460 \mathrm{~mm}$ effective with $\mathbf{4}$ bars of 20 $\mathbf{m m}$ diameter on tension side and 2 bars of 16 mm diameter on compressive side and effective cover is $\mathbf{4 0} \mathrm{mm}$. Use M_{15} and Fe 250 .

Solution:-
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{4 6 0} \mathbf{~ m m}$
Effective cover $=d^{\prime}=\mathbf{4 0} \mathbf{~ m m}$
Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=\mathbf{4 X} \quad \frac{\pi}{4} X \quad \phi^{2}=4 X \quad \frac{\pi}{4} X \quad 20^{2}=1256.63 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$
Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \quad \frac{\pi}{4} X \phi^{2}=2 \times \frac{\pi}{4} \times 16^{2}=402.12 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$

Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45 \mathrm{Fck}=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fsc $=0.87 \mathrm{Fy}=0.87 \mathrm{X} 250=217.5 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{Cu}_{1}+\mathrm{Cu}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc (Fsc -Fcc) $=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 15 \mathrm{x} \mathrm{Xu} \times 230+402.12 \mathrm{x}(217.5-6.75)=0.87 \times 250 \mathrm{x} 1256.63$
$\mathrm{Xu}=151.83 \mathrm{~mm}$
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d- 0.42 Xu$)+$ Asc (Fsc - Fcc) $(\mathrm{d}-\mathrm{d}$ ')
$\mathrm{Mu}=0.36 \times 15 \times 151.33 \times 230(460-0.42 \times 151.83)+402.12 \times(217.5-6.75)(460-40)$
$\mathrm{Mu}=110.31 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=110.31 \mathrm{KNm}$
3) Find moment of resistance of doubly R / F rectangular section $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ effective with 2 bars of $\mathbf{2 5} \mathbf{~ m m}$ diameter on tension side and 2 bars of $\mathbf{1 6 ~ m m}$ diameter on compressive side and effective cover is $50 \mathbf{~ m m}$. Use M_{15} and Fe 250.

Solution:-

STEP 1: -Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{4 5 0} \mathbf{~ m m}$
Effective cover $=\mathbf{d}^{\prime}=\mathbf{5 0} \mathbf{~ m m}$
Number of bar on tension side $=2$
Area of steel on tension side $=\mathbf{A s t}=2 \times \frac{\pi}{4} X \quad \phi^{2}=2 \times \frac{\pi}{4} X 20^{2}=981.74 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$
Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \quad \frac{\pi}{4} X \quad \phi^{2}=2 \times \frac{\pi}{4} \times 16^{2}=402.12 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45 \mathrm{Fck}=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fsc $=0.87 \mathrm{Fy}=0.87 \mathrm{X} 250=217.5 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)

Compressive force $=$ Tensile force

$\mathbf{C u}=\mathbf{T u}$
$\mathbf{C u}_{1}+\mathbf{C u}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc (Fsc -Fcc) $=0.87$ Fy Ast
0.36 x $15 \mathrm{x} \mathrm{Xu} \times 250+402.12 \times(217.5-6.75)=0.87 \times 250 \mathrm{x} 981.74$
$\mathrm{Xu}=95.39 \mathrm{~mm}$

STEP 3: To find Moment of resistance of section

$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d- 0.42 Xu$)+$ Asc (Fsc - Fcc) (d-d')
$\mathrm{Mu}=0.36 \times 15 \times 95.39 \times 250(450-0.42 \times 95.39)+402.12 \times(217.5-6.75)(450-50)$
$\mathrm{Mu}=86.68 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=86.68 \mathrm{KNm}$

CASE II : - If Fe 415 or Fe 500 is given in numerical

If Fe 415 or Fe 500 is given in numerical then use stress-strain relationship

Sr No	Strain	Stress (N/ mm ${ }^{2}$)
1	144×10^{-5}	288.00
2	145×10^{-5}	289.65
3	150×10^{-5}	294.88
4	160×10^{-5}	303.86
5	170×10^{-5}	311.07
6	180×10^{-5}	317.07
7	190×10^{-5}	323.55
8	200×10^{-5}	327.14
9	210×10^{-5}	331.41
10	220×10^{-5}	335.15
11	230×10^{-5}	338.76
12	240×10^{-5}	342.43
13	250×10^{-5}	345.11
14	260×10^{-5}	347.67
15	270×10^{-5}	350.26
16	280×10^{-5}	352.14
17	290×10^{-5}	353.02
18	300×10^{-5}	353.90
19	310×10^{-5}	354.77
20	320×10^{-5}	355.65
21	330×10^{-5}	356.52
22	340×10^{-5}	357.40
23	350×10^{-5}	358.27
24	360×10^{-5}	359.15
25	370×10^{-5}	360.02
26	380×10^{-5}	360.09

NOTE: - This table is prepared from IS Code having page number 70 from figure number $\mathbf{2 3}$ A (Cold Worked Deformed Bar).
If table is not given in exam then use IS Code having page number 70 from figure number 23 A (Cold Worked Deformed Bar).

1) Find moment of resistance of rectangular beam section $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective with $\mathbf{4}$ bars of 22 mm diameter on tension side and 4 bars of 16 mm on compressive side and effective cover is 50 mm . Use M_{15} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{3 0 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{5 0 0} \mathbf{~ m m}$
Effective cover $=$ d' $^{\mathbf{~}=\mathbf{5 0} \mathbf{~ m m}}$
Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \phi^{2}=4 \times \quad \frac{\pi}{4} X 22^{2}=1520.53 \mathrm{~mm}^{2}$
Number of bar on compressive side $=4$
Area of steel on compressive side $=\mathbf{A s c}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \quad \frac{\pi}{4} X \quad 16^{2}=804.25 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{F e} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathbf{C u}_{1}+\mathbf{C u}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc ($\mathbf{F s c}-\mathbf{F c c}$) $=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 15 \times$ Xu x $300+804.25 \times($ Fsc -6.75$)=0.87 \times 415 \times 1520.53$
$\mathbf{1 6 2 0} \mathbf{~ X u}+\mathbf{8 0 4 . 2 5}$ Fsc $-\mathbf{8 0 4 . 2 5} \times 6.75=548.98 \times 10^{3}$
$1620 \mathrm{Xu}+804.25$ Fsc $=554.415 \mathrm{X} \mathrm{10}{ }^{3}$
Dividing above equation by 1620
$\mathrm{Xu}+\mathbf{0 . 4 9 6 7} \mathrm{Fsc}=\mathbf{3 4 2 . 2 3}$ \qquad
Xu max $=0.48 \mathrm{~d}$
Xu $\max =0.48 \times 500=240 \mathrm{~mm}$
Trial 1 :- Assuming Xu = 230 mm (IS 456:2000, P. No:96, C No: G.1. 2

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{230}{0.0035}=\frac{230-50}{\xi s c}
$$

$\xi s c=274 \times 10^{-5}$

From table

$\xi s c$	Fsc
270×10^{-5}	$\mathbf{3 5 0 . 2 6}$
274×10^{-5}	$\boldsymbol{?}$
280×10^{-5}	$\mathbf{3 5 2 . 1 4}$

Fsc $=\mathbf{3 5 1 . 0 1} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 4 9 6 7} \mathrm{Fsc}=342.23$
$\mathbf{X u}+\mathbf{0 . 4 9 6 7} \mathbf{X 3 5 1 . 0 1}=342.23$
$\mathrm{Xu}=167.88 \mathrm{~mm}$
Assume value of $\mathbf{X u}=\mathbf{2 3 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 6 7 . 8 8} \mathbf{~ m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{2 3 0} \mathbf{~ m m}$ is wrong.

Trial 2 :- Assuming $\mathbf{X u}=170 \mathrm{~mm}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}$

$$
\frac{170}{0.0035}=\frac{170-50}{\xi_{s c}}
$$

$\xi s c=247 \times 10^{-5}$

From table

$\xi s c$	Fsc
240×10^{-5}	$\mathbf{3 4 2 . 4 3}$
247×10^{-5}	$\mathbf{?}$
250×10^{-5}	$\mathbf{3 4 5 . 1 1}$

Fsc $=\mathbf{3 5 1 . 0 1} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 4 9 6 7} \mathrm{Fsc}=342.23$
$\mathrm{Xu}+\mathbf{0 . 4 9 6 7}$ X 351.11 $=\mathbf{3 4 2 . 2 3}$
$\mathrm{Xu}=\mathbf{1 7 1 . 2 1} \mathrm{mm}$
Assume value of $\mathbf{X u}=\mathbf{1 7 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 7 1 . 2 1} \mathbf{m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=170 \mathrm{~mm}$ is wrong.
Trial 3:- Assuming $\mathbf{X u}=\mathbf{1 7 1} \mathbf{~ m m}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{171}{0.0035}=\frac{171-50}{\xi s c}
$$

$\xi s c=247.66 \times 10^{-5}$

From table

$\xi s c$	Fsc
240×10^{-5}	$\mathbf{3 4 2 . 4 3}$
247.66×10^{-5}	$\boldsymbol{?}$
250×10^{-5}	$\mathbf{3 4 5 . 1 1}$

Fsc $=\mathbf{3 4 4 . 4 8} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 4 9 6 7} \mathrm{Fsc}=342.23$
$\mathbf{X u}+\mathbf{0 . 4 9 6 7} \mathbf{X 3 4 4 . 4 8 = 3 4 2 . 2 3}$
$\mathrm{Xu}=\mathbf{1 7 1 . 1 3} \mathbf{~ m m}$
Assume value of $\mathbf{X u}=\mathbf{1 7 1} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 7 1 . 1 3} \mathbf{~ m m}$, this two value nearly equal to each other. Therefore above assumption for $X u=171 \mathrm{~mm}$ is correct.
$\mathrm{Xu} \cong 171 \mathrm{~mm}$
Xu max $=\mathbf{0 . 4 8} \mathbf{d}=\mathbf{0 . 4 8} \times 500=240 \mathrm{~mm}$
Xu < Xumax
The section under reinforced section
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d- 0.42 Xu$)+$ Asc (Fsc - Fcc) $\left(\mathrm{d}-\mathrm{d}^{\prime}\right)$
$\mathrm{Mu}=0.36 \times 15 \times 171 \times 300(500-0.42 \times 171)+804.25 \times(344.48-6.75)(500-50)$
$\mathrm{Mu}=240.77 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=240.77 \mathrm{KNm}$
2) Find moment of resistance of rectangular beam section $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ effective with 4 bars of 18 mm diameter on tension side and 2 bars of 14 mm diameter on compressive side and effective cover is 35 mm . Use M_{20} and Fe 415.

STEP 1: -Given Data

Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{4 5 0} \mathbf{~ m m}$
Effective cover $=$ d' $^{\prime}=\mathbf{3 5} \mathbf{~ m m}$
Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \quad \frac{\pi}{4} X \quad 18^{2}=1017.88 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$
Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \mathbf{X} \quad \frac{\pi}{4} X \phi^{2}=2 \times \frac{\pi}{4} X 14^{2}=307.88 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45 \mathrm{Fck}=0.45 \mathrm{X} 20=9 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathbf{C u}_{1}+\mathbf{C u}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc ($\mathbf{F s c}-\mathbf{F c c}$) $=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 20 \times$ Xu x $250+307.88 \times($ Fsc -9$)=0.87 \times 415 \times 1017.88$
$\mathbf{1 8 0 0} \mathbf{X u}+\mathbf{3 0 7 . 8 8}$ Fsc $-2770.92=367.51 \times 10^{3}$
$1800 \mathrm{Xu}+307.88 \mathrm{Fsc}=370.28 \times 10^{3}$
Dividing above equation by 1800
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=\mathbf{2 0 5 . 7 1}$
Xu max $=0.48 \mathrm{~d}$
$\mathrm{Xu} \max =0.48 \times 450=\mathbf{2 1 6} \mathbf{~ m m}$
Trial 1:- Assuming Xu=200 mm

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{200}{0.0035}=\frac{200-35}{\xi_{s c}}
$$

$\xi s c=288.75 \times 10^{-5}$

From table

$\xi_{s c}$	Fsc
280×10^{-5}	$\mathbf{3 5 2 . 1 2}$
288.75×10^{-5}	$\boldsymbol{?}$
290×10^{-5}	$\mathbf{3 5 3 . 0 2}$

Fsc $=\mathbf{3 5 2 . 9 1} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=205.71$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0 \times 3 5 2 . 9 1 = 2 0 5 . 7 1}$
$\mathrm{Xu}=145.36 \mathrm{~mm}$
Assume value of $\mathbf{X u}=\mathbf{2 0 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 4 5 . 3 6} \mathbf{~ m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{2 0 0} \mathbf{~ m m}$ is wrong.

Trial 2 :- Assuming $\mathbf{X u}=145 \mathrm{~mm}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}$

$$
\frac{145}{0.0035}=\frac{145-35}{\xi_{s c}}
$$

$\xi s c=265.52 \times 10^{-5}$

From table

$\xi s c$	Fsc
260×10^{-5}	$\mathbf{3 4 7 . 6 7}$
265.52×10^{-5}	$\mathbf{?}$
270×10^{-5}	$\mathbf{3 5 0 . 2 6}$

Fsc $=\mathbf{3 4 9 . 1 0} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=205.71$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \times \mathbf{3 4 9 . 1 0}=\mathbf{2 0 5 . 7 1}$
$\mathrm{Xu}=146.01 \mathrm{~mm}$
Assume value of $X u=145 \mathrm{~mm}$ and current value of $X u=146.01 \mathrm{~mm}$, this two value not equal to each other. Therefore above assumption for $X u=145 \mathrm{~mm}$ is wrong.
Trial 3 :- Assuming Xu = $\mathbf{1 4 6} \mathbf{~ m m}$

By using similar triangle law

$$
\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}
$$

$$
\frac{146}{0.0035}=\frac{146-35}{\xi_{s c}}
$$

$\xi s c=266.10 \times 10^{-5}$

From table

$\xi s c$	Fsc
260×10^{-5}	$\mathbf{3 4 7 . 6 7}$
266.10×10^{-5}	$\mathbf{?}$
270×10^{-5}	$\mathbf{3 5 0 . 2 6}$

Fsc $=\mathbf{3 4 9 . 2 5} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=205.71$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0 \times 3 4 9 . 2 5 = 2 0 5 . 7 1}$
$\mathbf{X u}=145.99 \mathrm{~mm}$

Assume value of $\mathbf{X u}=146 \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 4 5 . 9 9} \mathbf{~ m m}$, this two value nearly equal to each other. Therefore above assumption for $X u=146 \mathbf{~ m m}$ is correct.
$X u \cong 146 \mathrm{~mm}$
Xu max $=0.48 \mathrm{~d}=0.48 \times 450=216 \mathrm{~mm}$
Xu < Xumax
The section is under reinforcement
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d- 0.42 Xu$)+$ Asc (Fsc - Fcc) (d-d')
$\mathrm{Mu}=0.36 \times 20 \times 146 \times 250(450-0.42 \times 146)+307.88 \times(349.25-9)(450-35)$
$\mathrm{Mu}=145.62 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=145.62 \mathrm{KNm}$
3) A doubly reinforced rectangular beam section is $\mathbf{2 5 0} \mathrm{mm}$ wide, the effective depth of section 650 $\mathbf{m m}$. The effective cover to both compressive and tensile reinforcements is $\mathbf{5 0} \mathbf{~ m m}$. The tension reinforcement with 4 bars of 16 mm diameter of tension side and 4 bars of 10 mm diameter on compressive Use M_{20} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{6 5 0} \mathbf{~ m m}$
Effective cover $=\mathbf{d}^{\prime} \mathbf{= 5 0} \mathbf{~ m m}$
Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \quad \frac{\pi}{4} X \quad 16^{2}=804.23 \mathrm{~mm}^{2}$
Number of bar on compressive side $=4$

Area of steel on compressive side $=\mathbf{A s c}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \frac{\pi}{4} \times 10^{2}=314.16 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{F e} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45 \mathrm{Fck}=0.45 \mathrm{X} 20=9 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{Cu}_{1}+\mathrm{Cu}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc $($ Fsc $-\mathbf{F c c})=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 20 \times$ Xu x $250+314.16 \times($ Fsc -9$)=0.87 \times 415 \times 804.23$
$\mathbf{1 8 0 0 ~ X u}+\mathbf{3 1 4 . 1 6}$ Fsc $-2827.44=290.37 \times 10^{3}$
$1800 \mathrm{Xu}+\mathbf{3 1 4 . 1 6}$ Fsc $=293.197 \mathrm{X} \mathrm{10}^{3}$

Dividing above equation by 1800
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5} \mathrm{Fsc}=162.887$
$\mathrm{Xu} \max =0.48 \mathrm{~d}$
$\mathrm{Xu} \max =0.48 \times 650=312 \mathrm{~mm}$
Trial 1:- Assuming $\mathbf{X u}=\mathbf{3 1 0} \mathbf{~ m m}$

By using similar triangle law

$$
\begin{array}{ll}
\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c} & \frac{310}{0.0035}=\frac{310-50}{\xi s c} \\
\xi s c=293.55 \times 10^{-5} &
\end{array}
$$

From table

$\xi s c$	Fsc
290×10^{-5}	$\mathbf{3 5 3 . 0 2}$
293.55×10^{-5}	$\mathbf{?}$

Fsc $=\mathbf{3 5 3 . 3 3} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5} \mathrm{Fsc}=162.887$
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5} \mathbf{x} 353.33=162.887$
$\mathrm{Xu}=\mathbf{1 0 1 . 2 3} \mathbf{~ m m}$
Assume value of $\mathbf{X u}=\mathbf{3 1 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 0 1 . 2 3} \mathbf{~ m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{3 1 0} \mathbf{~ m m}$ is wrong.

Trial 2:- Assuming $\mathbf{X u}=\mathbf{1 0 0} \mathbf{~ m m}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{100}{0.0035}=\frac{100-50}{\xi s c}
$$

$\xi s c=175 \times 10^{-5}$

From table

$\xi_{s c}$	Fsc
170×10^{-5}	$\mathbf{3 1 1 . 0 7}$
175×10^{-5}	$\mathbf{?}$
180×10^{-5}	$\mathbf{3 1 7 . 3 1}$

Fsc $=\mathbf{3 1 4 . 1 9} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5} \mathrm{Fsc}=162.887$
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5} \times 314.19=162.887$
$\mathbf{X u}=108.06 \mathrm{~mm}$

Assume value of $\mathbf{X u}=\mathbf{1 0 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 0 8 . 0 6} \mathbf{~ m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{1 0 0} \mathbf{~ m m}$ is wrong.
Trial 3 :- Assuming $\mathbf{X u}=\mathbf{1 0 7} \mathbf{~ m m}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{107}{0.0035}=\frac{107-50}{\xi_{s c}}
$$

$\xi s c=186.45 \times 10^{-5}$

From table

$\xi s c$	Fsc
180×10^{-5}	$\mathbf{3 1 7 . 3 1}$
186.45×10^{-5}	$\mathbf{?}$
190×10^{-5}	$\mathbf{3 2 3 . 5 5}$

Fsc $=\mathbf{3 2 1 . 3 3} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5 \mathrm { Fsc } = 1 6 2 . 8 8 7}$
$\mathrm{Xu}+\mathbf{0 . 1 7 4 5 \times 3 2 1 . 3 3 = 1 6 2 . 8 8 7}$
$\mathrm{Xu}=106.81 \mathrm{~mm}$

Assume value of $\mathbf{X u}=\mathbf{1 0 7} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{1 0 6 . 8 1} \mathbf{~ m m}$, this two value nearly equal to each other. Therefore above assumption for $\mathrm{Xu}=\mathbf{1 0 7} \mathbf{~ m m}$ is correct.
$X u \cong 107 \mathrm{~mm}$
$\mathrm{Xu} \max =0.48 \mathrm{~d}=0.48 \times 650=312 \mathrm{~mm}$
Xu < Xumax
The section is under reinforcement
STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu b (d-0.42 Xu) + Asc (Fsc - Fcc) (d-d')
$\mathrm{Mu}=0.36 \times 20 \times 107 \times 250(650-0.42 \times 107)+314.16 \times(321.33-9)(650-50)$
$\mathrm{Mu}=175.41 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=175.41 \mathrm{KNm}$
4) A doubly reinforced rectangular beam section is 250 mm wide, the effective depth of section 450 mm . The effective cover to both compressive and tensile reinforcements is 35 mm . The tension reinforcement with 4 bars of 22 mm diameter of tension side and 2 bars of 14 mm diameter on compressive Use M_{20} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=d=450 \mathrm{~mm}$
Effective cover $=d^{\prime}=\mathbf{3 5} \mathbf{~ m m}$
Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \phi^{2}=4 \times \quad \frac{\pi}{4} X 22^{2}=1520.53 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$
Area of steel on compressive side $=A s c=2 \mathbf{X}\left(\frac{X u \max -\mathrm{d}^{\prime}}{X u \max }\right) \times 0.0035=2 \times \frac{\pi}{4} X 14^{2}=307.08$ mm^{2}
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=F y=415 \mathrm{~N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45 \times 20=9 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis (Xu)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathbf{C u}_{1}+\mathbf{C u}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc (Fsc -Fcc) $=0.87$ Fy Ast
$0.36 \times 20 \times \mathrm{Xu} \times 250+307.08 \times($ Fsc -9$)=0.87 \times 415 \times 1520.53$
$1800 \mathrm{Xu}+307.88$ Fsc $-2770.92=548.99 \times 10^{3}$
$1800 \mathrm{Xu}+307.88 \mathrm{Fsc}=551.76 \mathrm{X} \mathbf{1 0}^{3}$

Dividing above equation by 1800
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=306.53$
$X u \max =0.48 \mathrm{~d}$
Xu max $=0.48 \times 450=216 \mathrm{~mm}$
Trial 1:- Assuming Xu $=210 \mathrm{~mm}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi_{s c}}$

$$
\frac{210}{0.0035}=\frac{2100-35}{\xi_{s c}}
$$

$\xi s c=291.67 \times 10^{-5}$

From table

$\xi s c$	Fsc
290×10^{-5}	$\mathbf{3 5 3 . 0 2}$
291.67×10^{-5}	$\mathbf{?}$
300×10^{-5}	$\mathbf{3 5 3 . 9 0}$

Fsc $=\mathbf{3 5 3 . 1 7} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=306.53$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \times 353.17=306.53$
$\mathrm{Xu}=246.14 \mathrm{~mm}$
Assume value of $\mathbf{X u}=\mathbf{2 1 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{2 4 6 . 1 4 \mathrm { mm }}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=210 \mathrm{~mm}$ is wrong.

Trial 2 :- Assuming $\mathrm{Xu}=\mathbf{2 4 6} \mathbf{~ m m}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}$
$\xi s c=300.30 \times 10^{-5}$

From table

$\xi s c$	Fsc
300×10^{-5}	$\mathbf{3 5 3 . 9 0}$
300.3×10^{-5}	$\boldsymbol{?}$
310×10^{-5}	$\mathbf{3 5 4 . 7 7}$

Fsc $=\mathbf{3 5 3 . 9 2} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=306.53$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \times 353.92=306.53$
$\mathbf{X u}=\mathbf{2 4 6 . 0 1} \mathbf{~ m m}$

Assume value of $\mathbf{X u}=\mathbf{2 4 6} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{2 4 6 . 0 1} \mathbf{~ m m}$, this two value nearly equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{2 4 6} \mathbf{~ m m}$ is correct.
$\mathrm{Xu} \cong 246 \mathrm{~mm}$
Xu max $=0.48 \mathrm{~d}=0.48 \times 450=216 \mathrm{~mm}$
Xu $>$ Xumax
The section over reinforced section
Note: - If $\mathrm{Xu}>$ Xumax then consider the value of Xumax in the calculation of moment of resistance.

STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu max b (d- 0.42 Xumax) + Asc (Fsc - Fcc) (d-d')
$\mathrm{Mu}=0.36 \times 20 \times 246 \times 250(450-0.42 \times 246)+307.886 \times(353.92-9)(450-35)$
$\mathrm{Mu}=183.76 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=183.76 \mathrm{KNm}$
5) A doubly reinforced rectangular beam section is $\mathbf{2 5 0} \mathbf{~ m m}$ wide, the effective depth of section 450 mm . The effective cover to both compressive and tensile reinforcements is $\mathbf{3 0} \mathbf{~ m m}$. The tension reinforcement with 4 bars of 20 mm diameter of tension side and 2 bars of 10 mm diameter on compressive Use M_{15} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 5 0} \mathbf{~ m m}$
Effective Depth of rectangular section $=\mathbf{d}=\mathbf{4 5 0} \mathbf{~ m m}$
Effective cover $=\mathbf{d}^{\prime}=\mathbf{3 0} \mathbf{~ m m}$

Number of bar on tension side $=4$
Area of steel on tension side $=\mathbf{A s t}=4 \times \quad \frac{\pi}{4} X \quad \phi^{2}=4 \times \quad \frac{\pi}{4} \times 20^{2}=1256.64 \mathrm{~mm}^{2}$
Number of bar on compressive side $=2$
Area of steel on compressive side $=\mathbf{A s c}=\mathbf{2} \mathbf{X} \quad \frac{\pi}{4} \times \phi^{2}=2 \times \frac{\pi}{4} \times 10^{2}=157.08 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{F e} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45$ X $15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: To find depth of neutral axis ($\mathbf{X u}$)
Compressive force $=$ Tensile force
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{Cu}_{1}+\mathrm{Cu}_{2}=\mathbf{T u}$
0.36 Fck Xu b + Asc (Fsc -Fcc) $=\mathbf{0 . 8 7}$ Fy Ast
$0.36 \times 15 \times$ Xu x $250+157.08 \times($ Fsc -6.75$)=0.87 \times 415 \times 1256.64$
$1350 \mathrm{Xu}+157.08$ Fsc $-1060.29=453.71 \mathrm{X} 10^{3}$
$1350 \mathrm{Xu}+157.08 \mathrm{Fsc}=454.697 \times 10^{3}$

Dividing above equation by 1350
$\mathrm{Xu}+\mathbf{0 . 1 1 6 4} \mathrm{Fsc}=336.87$
Xu max $=0.48 \mathrm{~d}$
$\mathrm{Xu} \max =0.48 \times 450=216 \mathrm{~mm}$
Trial 1 :- Assuming $\mathbf{X u}=210 \mathrm{~mm}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}$

$$
\frac{210}{0.0035}=\frac{2100-30}{\xi_{s c}}
$$

$\xi s c=300 \times 10^{-5}$

From table

$\xi s c$	Fsc
-	-
-	-
300×10^{-5}	$\mathbf{3 5 3 . 9 0}$

Fsc $=\mathbf{3 5 3 . 9 0} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathbf{X u}+\mathbf{0 . 1 1 6 4} \mathbf{F s c}=\mathbf{3 3 6 . 8 7}$
$\mathrm{Xu}+\mathbf{0 . 1 1 6 4 \times 3 5 3 . 9 0 = 3 3 6 . 8 7}$
$\mathbf{X u}=295.78 \mathrm{~mm}$
Assume value of $\mathbf{X u}=\mathbf{2 1 0} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{2 9 5 . 7 8} \mathbf{~ m m}$, this two value not equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{2 1 0} \mathbf{~ m m}$ is wrong.

Trial 2 :- Assuming $\mathbf{X u}=295 \mathrm{~mm}$

By using similar triangle law
$\frac{X u}{0.0035}=\frac{X u-\mathrm{d}^{\prime}}{\xi s c}$

$$
\frac{295}{0.0035}=\frac{295-30}{\xi s c}
$$

$\xi s c=314.41 \times 10^{-5}$

From table

$\xi_{s c}$	Fsc
310×10^{-5}	$\mathbf{3 5 4 . 7 1}$
$314.19 \mathrm{X} 10^{-5}$	$\boldsymbol{?}$
320×10^{-5}	$\mathbf{3 5 5 . 6 5}$

Fsc $=\mathbf{3 5 5 . 1 6} \mathrm{N} / \mathrm{mm}^{2} \quad$ substituting in equation (1)
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0} \mathrm{Fsc}=306.53$
$\mathrm{Xu}+\mathbf{0 . 1 7 1 0 \times 3 5 5 . 1 6 = 3 0 6 . 5 3}$
$\mathrm{Xu}=295.53 \mathrm{~mm}$

Assume value of $\mathbf{X u}=\mathbf{2 9 5} \mathbf{~ m m}$ and current value of $\mathbf{X u}=\mathbf{2 9 5 . 5 3} \mathbf{~ m m}$, this two value nearly equal to each other. Therefore above assumption for $\mathbf{X u}=\mathbf{2 9 5} \mathbf{~ m m}$ is correct.
$X u \cong 295 \mathrm{~mm}$
Xu max $=0.48 \mathrm{~d}=0.48 \times 450=216 \mathrm{~mm}$
Xu $>$ Xumax
The section over reinforced section
Note: - If $\mathbf{X u}>$ Xumax then consider the value of Xumax in the calculation of moment of resistance.

STEP 3: To find Moment of resistance of section
$\mathrm{Mu}=\mathrm{Cu}_{1} \mathrm{Z}_{1}+\mathrm{Cu}_{2} \mathrm{Z}_{2}$
$\mathrm{Mu}=0.36$ Fck Xu max b (d- 0.42 Xumax) + Asc (Fsc - Fcc) (d-d')
$\mathrm{Mu}=0.36 \times 15 \times 295 \times 250(450-0.42 \times 295)+157.08 \times(355.16-6.75)(450-30)$
$\mathrm{Mu}=127.75 \times 10^{6} \mathrm{Nmm}$
$\mathrm{Mu}=127.75 \mathrm{KNm}$

Type II :- To find area of steel (Ast and Asc)
Stepwise Procedure
STEP 1:To find :- The area of steel (Ast)
Given Data:- b,d, Fy, Fck, Design Moment (\mathbf{M}_{d})
d = D - Effective cover
$\mathbf{d}=\mathrm{D}-\mathbf{d}^{\prime}$
Effective cover $=d^{\prime}=$ Clear cover $+\frac{\phi}{2}$
STEP 2: Calculate ultimate moment of resistance
Mu lilmit $=0.148$ Fck bd ${ }^{2}$ Fe 250
Mu lilmit $=0.138$ Fck bd ${ }^{2}$ Fe 415
Mu lilmit $=0.133$ Fck bd ${ }^{2}$ Fe 500
STEP 3: To compare M_{d} and $M_{U \text { limit }}$
$M_{d} \prec M_{U \text { limit }}$ section is Under reinforced Section
$\mathbf{M}_{\mathrm{d}}=\mathbf{M}_{\mathrm{U} \text { limit }}$ section is Balanced Section
$M_{d} \succ M_{U \text { limit }}$ section is Over reinforced Section
Unbalance moment
$\mathbf{M u}_{2}=\mathbf{M}_{\mathrm{d}}-\mathbf{M u}_{\mathbf{1}}$
$\mathbf{M u}_{1}=$ Mulimit
STEP 4: Calculate area of steel
To find Ast $_{1}$
Mulimit $=\mathrm{Mu}_{1}=\mathbf{0 . 8 7}$ Fy Ast $\mathbf{1}_{\mathbf{1}}(\mathbf{d}-\mathbf{0 . 4 2} \mathrm{Xu}$ max $)$
Ast $_{1}=$?

To find Ast_{2}
$\mathrm{Mu}_{2}=\mathbf{0 . 8 7} \mathrm{Fy} \mathrm{Ast}_{2}\left(\mathrm{~d}^{2} \mathrm{~d}^{\prime}\right)$
Ast $_{2}=$?
Total Ast $=$ Ast $_{1}+$ Ast $_{2}$
Assume diameter of bar = $\boldsymbol{\Phi}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$
To find Asc
$\mathbf{M u}_{2}=$ Asc (Fsc - Fcc) (d-d')
Asc=?
$\mathrm{Fsc}=0.87 \times \mathrm{Fy}$. Fe 250
Fsc is calculated from P No :- 70 (IS code) And Figure No:- 23 (a) For Fe 415 and Fe 500 Grade of steel only
Assume diameter of bar = $\boldsymbol{\Phi}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

1) A rectangular beam 230 mm wide and $\mathbf{4 6 0} \mathbf{~ m m}$ overall depth has to resist factored Bending moment of 160 KNm . Design reinforcement assuming effective cover of $\mathbf{3 5} \mathbf{~ m m}$ on both side. Use M_{15} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Depth of rectangular section $=D=460 \mathrm{~mm}$
Effective cover $=d^{\prime}=\mathbf{3 5} \mathbf{~ m m}$
Effective depth of section $=d=460-35=425 \mathrm{~mm}$
Factored moment $=M_{d}=160 \mathrm{KNm}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathbf{F y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: Calculate ultimate moment of resistance
Mu lilmit $=0.138$ Fck $b d^{2}$.. Fe 415
Mu lilmit $=0.138 \times 15 \times 230 \times 425^{2}$
Mu limit $=85.99 \times 10^{6} \mathrm{Nmm}$
Mu limit $=\mathrm{Mu}_{1}=85.99 \mathrm{KNm}$
STEP 3: To compare M_{d} and $M_{U \text { limit }}$
$M_{d}=160 \mathrm{KNm}$
Mu limit $=\mathrm{Mu}_{1}=85.99 \mathrm{KNm}$
$\mathbf{M}_{\mathbf{d}} \succ \mathbf{M}_{\mathbf{U l i m i t}}$
The section is doubly reinforced Section

Unbalance moment
$\mathbf{M u}_{2}=\mathbf{M}_{\mathrm{d}}-\mathrm{Mu}_{1}$
$\mathbf{M u}_{1}=$ Mulimit
$M u_{2}=160-85.99=74.01 \mathrm{KNm}$
STEP 4: Calculate area of steel
To find Ast $_{1}$
Mulimit $=\mathrm{Mu}_{1}=\mathbf{0 . 8 7} \mathrm{Fy} \mathrm{Ast} \mathbf{1}_{1}(\mathrm{~d}-\mathbf{0 . 4 2} \mathrm{Xu}$ max $)$
Xu max $=\mathbf{0 . 4 8} \mathbf{d}=\mathbf{0 . 4 8 \times 4 2 5}=\mathbf{2 0 4} \mathbf{~ m m}$
$85.99 \times 10^{6}=0.87 \times 415 \times$ Ast $_{1} \mathbf{x}(425-\mathbf{0 . 4 2} \times 204)$
Ast $_{1}=701.89 \mathbf{~ m m}^{2}$
To find Ast $_{2}$
$\mathrm{Mu}_{2}=\mathbf{0 . 8 7} \mathrm{Fy} \mathrm{Ast}_{2}\left(\mathrm{~d}^{\prime} \mathrm{d}^{\prime}\right)$
$74.01 \times 10^{6}=0.87 \times 415 \times$ Ast $_{2} \times(425-35)$
Ast $_{2}=525.60$ mm 2
Total Ast $=$ Ast $_{1}+$ Ast $_{2}$
Total Ast $=\mathbf{7 0 1 . 8 9}+\mathbf{5 2 5 . 6 0}=\mathbf{1 2 2 7 . 4 9} \mathrm{mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=20 \mathrm{~mm}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1227.49}{(\pi / 4) \times 20^{2}}=3.90 \cong 4$

To find Asc
$\mathbf{M u}_{\mathbf{2}}=$ Asc (Fsc - Fcc) (d-d')
Fsc is calculated from P No :- 70 (IS code) And Figure No:- 23 (a)
ESc $=0.0035 \times\left(\frac{\mathrm{Xu}_{\text {max }}-\mathrm{d}^{\prime}}{X u_{\text {max }}}\right) \quad$ from P No :- 96 (IS code)
$\varepsilon s c=0.0035 \times\left(\frac{204-35}{204}\right)$
Esc $=2.8995 \times 10^{-3}=289.95 \times 10^{-5}$
Fsc $=0.84$ Fy $=0.84 \times 415=348.60 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{P}$ No :- 70 (IS code) And Figure No:- 23 (a)
74.01 $\times 1 \mathbf{1 0}^{6}=$ Asc ($348.60-6.75$) $\times(425-35)$

Asc $=553.12$ mm 2
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{553.12}{(\pi / 4) \times 20^{2}}=1.76 \cong 2$
2) A reinforced concrete beam 230 mm wide and 600 mm overall depth carries live load of $38 \mathrm{KN} / \mathrm{m}$ over a simply supported span of 5 m . Design reinforcement for the beam having effective cover of 40 mm on both side. Use M_{15} and Fe 415.
STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Depth of rectangular section $=D=600 \mathrm{~mm}$

Effective cover $=d^{\prime}=\mathbf{4 0} \mathbf{~ m m}$
Effective depth of section $=d=D-d^{\prime}=600-40=560 \mathrm{~mm}$
Span of beam $=\mathbf{L}=5 \mathrm{~m}$
beam is simply supported
Live load = $38 \mathrm{KN} / \mathrm{m}$
Self weight of beam $=b \times D \times 25=0.23 \times 0.6 \times 25=3.45 \mathrm{KN} / \mathrm{m}$
Total working load $=$ Live load + Self weight of beam $=38+3.45=41.45 \mathrm{KN} / \mathrm{m}$
Total factored load $(\mathbf{W u})=1.5 \times 41.45=62.175 \mathrm{KN} / \mathrm{m}$
Factored moment $=\mathbf{M}_{\mathbf{d}}=\frac{\mathrm{W}_{\mathrm{u}} \times \mathrm{L}^{2}}{8}=\frac{62.175 \times 5^{2}}{8}=194.30 \mathrm{KN} \mathrm{m}$
Factored moment $=M_{d}=\mathbf{1 9 4 . 3 0} \mathbf{K N m}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45 \mathrm{X} 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathbf{F y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: Calculate ultimate moment of resistance
Mu lilmit $=0.138 F c k b d^{2}$ Fe 415

Mu lilmit $=0.138 \times 15 \times 230 \times 560^{2}$
Mu limit $=149.30 \times 10^{6} \mathrm{Nmm}$
Mu limit $=\mathrm{Mu}_{1}=149.30 \mathrm{KNm}$
STEP 3: To compare M_{d} and $M_{U \text { limit }}$
$M_{d}=194.30 \mathrm{KNm}$
Mu limit $=\mathrm{Mu}_{1}=149.30 \mathrm{KNm}$
$\mathbf{M}_{\mathbf{d}} \succ \mathbf{M}_{\mathbf{U} \text { limit }}$
The section is doubly reinforced Section
Unbalance moment
$\mathbf{M u} \mathbf{u}_{\mathbf{2}}=\mathbf{M}_{\mathbf{d}}-\mathbf{M u}_{\mathbf{1}}$
$\mathbf{M u}_{1}=$ Mulimit
$\mathrm{Mu}_{2}=194.30-149.30=45 \mathrm{KNm}$
STEP 4: Calculate area of steel
To find Ast $_{1}$
Mulimit $=\mathrm{Mu}_{1}=0.87 \mathrm{Fy} \mathrm{Ast}_{1}(\mathbf{d - 0 . 4 2 ~ X u ~ m a x})$
Xu max $=0.48 \mathbf{d}=\mathbf{0 . 4 8} \times 560=268.8 \mathbf{~ m m}$
$149.30 \times 10^{6}=0.87 \times 415 \times$ Ast $_{1} \times(560-0.42 \times 268.8)$
Ast $_{1}=\mathbf{9 2 4 . 8 8} \mathbf{~ m m}^{2}$
To find Ast $_{2}$
$\mathrm{Mu}_{2}=0.87 \mathrm{Fy} \mathrm{Ast}_{2}$ (d-d')
$45 \times 10^{6}=0.87 \times 415 \times$ Ast $_{2} \times(560-40)$
Ast $_{2}=239.69 \mathbf{~ m m}^{2}$

Total $\mathbf{A s t}=\mathbf{A s t}_{\mathbf{1}}+\mathbf{A s t}_{\mathbf{2}}$
Total Ast $=924.88+239.69=1164.57 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1164.57}{(\pi / 4) \times 20^{2}}=3.70 \cong 4$

To find Asc
$\mathbf{M u}_{2}=$ Asc $($ Fsc - Fcc $)\left(d-d^{\prime}\right)$
Fsc is calculated from P No :- 70 (IS code) And Figure No:- 23 (a)
$\varepsilon s c=0.0035 x\left(\frac{\mathrm{Xu}_{\text {max }}-\mathrm{d}^{\prime}}{\mathrm{Xu}} \mathrm{max}_{\max }\right)$ from P No :- 96 (IS code)
$\varepsilon s c=0.0035 \times\left(\frac{268.8-40}{268.8}\right)=2.9792 \times 10^{-3}=297.92 \times 10^{-5}$
$\mathrm{Fsc}=0.84 \mathrm{Fy}=0.84 \times 415=348.60 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{P}$ No :-70 (IS code) And Figure No:- 23 (a) $45 \times 10^{6}=\operatorname{Asc}(348.60-6.75) \times(560-40)$
Asc $=253.15 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=12 \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{253.147}{(\pi / 4) \times 12^{2}}=2.23 \cong 3$
3)) A rectangular beam 230 mm wide and 460 mm overall depth has to resist factored moment of 150 KNm . Design reinforcement assuming effective cover of 35 mm on both side. Use M_{15} and Fe 250.

STEP 1: -Given Data
Width of rectangular section $=\mathbf{b}=\mathbf{2 3 0} \mathbf{~ m m}$
Depth of rectangular section $=D=460 \mathrm{~mm}$
Effective cover $=d^{\prime}=\mathbf{3 5} \mathbf{~ m m}$
Effective depth of section $=d=460-35=425 \mathrm{~mm}$
Factored moment $=M_{d}=150 \mathrm{KNm}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fcc $=0.45$ Fck $=0.45 \times 15=6.75 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Fsc}=0.87 \mathrm{Fy}=0.87 \mathrm{X} 250=217.5 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 2: Calculate ultimate moment of resistance
Mu lilmit $=0.148 F c k b d^{2}$ Fe 250
Mu lilmit $=0.148 \times 15 \times 230 \times 425^{2}$
Mu limit $=92.27 \times 10^{6} \mathrm{Nmm}$
Mu limit $=\mathrm{Mu}_{1}=92.27 \mathrm{KNm}$

STEP 3: To compare M_{d} and $M_{U \text { limit }}$
$M_{d}=150 \mathrm{KNm}$
Mu limit $=\mathrm{Mu}_{1}=92.27 \mathrm{KNm}$
$\mathbf{M}_{\mathbf{d}} \succ \mathbf{M}_{\text {Ulimit }}$
The section is doubly reinforced Section
Unbalance moment
$\mathbf{M u}_{2}=\mathbf{M}_{\mathrm{d}}-\mathbf{M u}_{1}$
$\mathbf{M u}_{1}=$ Mulimit
$\mathbf{M u}_{2}=\mathbf{1 5 0}-\mathbf{9 2 . 2 7}=\mathbf{5 7 . 7 7} \mathrm{KNm}$
STEP 4: Calculate area of steel
To find Ast $_{1}$
Mulimit $=\mathrm{Mu}_{1}=\mathbf{0 . 8 7} \mathrm{Fy}$ Ast $\mathbf{1}_{1}(\mathbf{d}-\mathbf{0 . 4 2} \mathrm{Xu}$ max $)$
Xu $\max =0.53 \mathrm{~d}=0.53 \mathrm{x} 425=\mathbf{2 2 5 . 2 5} \mathrm{mm}$
$92.27 \times 10^{6}=0.87 \times 250 \times$ Ast $_{1} \times(425-\mathbf{0 . 4 2} \times 225.25)$
Ast $_{1}=\mathbf{1 2 8 4 . 0 0 ~ m m}{ }^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1284}{(\pi / 4) \times 20^{2}}=4.087 \cong 5$
To find Ast $_{2}$

$92.27 \times 10^{6}=0.87 \times 250 \times$ Ast $_{2} \times(425-35)$
Ast $_{2}=1087.7 \mathrm{~mm}^{2}$
Total Ast $=$ Ast $_{1}+$ Ast $_{2}$
Total Ast $=\mathbf{1 2 8 4} \boldsymbol{+ 1 0 8 7 . 7}=\mathbf{2 3 7 1 . 7 6} \mathbf{~ m m}^{2}$
To find Asc
$\mathbf{M u}_{\mathbf{2}}=$ Asc (Fsc - Fcc) (d-d')
92.27 X 10 ${ }^{6}=$ Asc (217.5-6.75) x (425-35)

Asc $=1122.60 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1122.60}{(\pi / 4) \times 20^{2}}=3.57 \cong 4$

Limit State For shear (T and L Beam)

When beam and slab cast monolithically then it is called 'T' Beam.

Where $b_{f}=$ Width of flange
$\mathrm{D}_{\mathrm{f}}=$ Depth of flange
$D=$ Overall depth
d= Effective depth
$b_{w}=$ Width of beam
$\mathrm{A}_{\mathrm{st}}=$ Area of tensile steel

T and L Beam

Conditions:

1) Construction should be monolithically
2) The sufficient amount of R / F should be transparently place to the beam

Depth of neutral axis
Case I: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
Case II: $\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in web)
Types of problems

1) To find moment of resistance of section
2) To find the area of steel
3) To Design the section

Type I

To find moment of resistance of section

Case I: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)

Stepwise Procedure

Case I: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
Given Data:- $\mathbf{b}_{\mathbf{w}}, \mathbf{b}_{\mathbf{b}}$, d,Ast, Fy, Fck
d = D - Effective cover
$\mathbf{d}=\mathbf{D}$ - \mathbf{d}^{\prime}
$d^{\prime}=$ Effective cover $=$ Clear cover $+\frac{\phi}{2}$
STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \mathrm{FyAst}^{0.36 c k b}}{0 .}$
$\mathrm{xu}<\mathrm{D}_{\mathrm{f}}$ The assumption is correct

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad .For Fe 250
$\mathrm{Xu} \max =\mathbf{0 . 4 8 d}$ \qquad .For Fe 415
$\mathrm{Xu} \max =0.46 \mathrm{~d}$ \qquad For Fe 500

STEP 3: To compare Xu and Xu max
Prof. Durgesh H Tupe
a) If $\mathrm{Xu} \prec \mathrm{Xu}$ max then section is under reinforced
b) If $\mathrm{Xu}=\mathrm{Xu}$ max then section is balance section
c) If $\mathrm{Xu} \succ \mathrm{Xu}$ max then section is over reinforced, if section is over reinforced then consider it as balance section.

STEP 4: To find moment of resistance

a) For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
b) For balance section

$$
\mathrm{M}_{\text {ulimit }}=0.36 \mathrm{Fck} \mathrm{Xu}_{\max } \mathrm{b}\left(\mathrm{~d}-0.42 \mathrm{Xu}_{\max }\right)
$$

1) A ' T ' section having flange width 1000 mm and thickness of flange is 100 mm , width of web is 250 mm has effective depth of 500 mm . The beam is reinforced with 4 bars of 22 mm diameter. Find moment of resistance of section. Used Fe 250 and M_{15}.

Solution:- To find :- The moment of resistance of section

Given Data:- Width of Flange $=b_{f}=\mathbf{1 0 0 0} \mathbf{~ m m}$
Depth of flange $=D_{f}=\mathbf{1 0 0} \mathbf{~ m m}$
Width of web $=b_{w}=250 \mathrm{~mm}$
Effective depth $=\mathbf{d}=\mathbf{5 0 0} \mathbf{~ m m}$
$\phi=$ Diameter of bar $=22 \mathrm{~mm}$
No of bar $=4$
Ast $=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 22^{2}=1520.53 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $_{\mathrm{f}}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 250 \times 1520.53}{0.36 \times 15 \times 1000}=61.24 \mathrm{~mm}$
$\mathrm{xu}<\mathrm{D}_{\mathrm{f}}$
$61.24<100$, The assumption is correct
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$
.For Fe 250
Xu max $=0.53 \times 500=265 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu} \max$
$61.24 \prec 265$
then section is under reinforced
STEP 4: To find moment of resistance
Prof. Durgesh H Tupe

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 250 \times 1520.53(500-0.42 \times 61.24)=156.85 \times 10^{6} \mathrm{Nmm}=156.85 \mathrm{KNm}$
2) A ' T ' section having flange width 1400 mm and thickness of flange is 100 mm , width of web is 250 mm has effective depth of 500 mm . The beam is reinforced with 4 bars of 20 mm diameter. Find moment of resistance of section. Used Fe 415 and M_{15}.

Solution:- To find :- The moment of resistance of section
Given Data:- Width of Flange $=b_{f}=1400 \mathrm{~mm}$
Depth of flange $=D_{f}=\mathbf{1 0 0} \mathbf{~ m m}$
Width of web $=b_{w}=250 \mathrm{~mm}$
Effective depth $=\mathbf{d}=\mathbf{5 0 0} \mathbf{~ m m}$
$\phi=$ Diameter of bar= 20 mm
No of bar $=4$

$$
\text { Ast }=4 \times \frac{\pi}{4} \times \phi^{2}=4 \times \frac{\pi}{4} \times 20^{2}=1256.64 \mathrm{~mm}^{2}
$$

$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5 N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)

(From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck } \mathrm{b}_{\mathrm{f}}}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 1256.64}{0.36 \times 15 \times 1400}=60.01 \mathrm{~mm}$
$\mathrm{xu}<\mathrm{D}_{\mathrm{f}}$
60.01 < 100 ,The assumption is correct

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
Xu max $=0.48 \mathrm{~d}$
.For Fe 415
$\mathrm{Xu} \max =\mathbf{0 . 4 8} \times \mathbf{5 0 0}=\mathbf{2 4 0} \mathbf{~ m m}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu} \max$
$60.01 \prec 240$
then section is under reinforced

STEP 4: To find moment of resistance

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 1256.64(500-0.42 \times 60.01)=215.41 \mathrm{X} 10^{6} \mathrm{Nmm}=215.41 \mathrm{KNm}$

Effective width of flange (IS: 456: 2000, Page Number :37, C. No :23.1.2)
For T beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<\mathrm{C} / \mathrm{C}$ distance
For L beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{12}+b_{w}+3 D_{f}<\mathrm{C} / \mathrm{C}$ distance
$l_{0}=$ Distance between point of zero moment i.e. Effective span
$l_{0}=l$ (For simply supported beam)
$l_{0}=0.7 l$ (For continuous beam)
3) Find ultimate moment of resistance of T beam for the following particulars

1) Simply supported span $=4.5 \mathrm{~m}$
2) Slab thickness $=115 \mathrm{~mm}$
3) Width of web $=230 \mathrm{~mm}$
4) Effective depth $=450 \mathrm{~mm}$
5) Tensile steel $=8$ bars of 16 mm diameter in 2 rows
6) Spacing of beam $=3.5 \mathrm{~m} \mathrm{c} / \mathrm{c}$

Used Fe 415 and M_{20}.
Solution:- To find :- The moment of resistance of section
Given Data:- T beam
Simply supported beam
$\mathrm{l}=4.5 \mathrm{~m}$
$\mathrm{I}_{\mathrm{o}}=\mathrm{l}=4.5 \mathrm{~m}=4500 \mathrm{~mm}$
Depth of flange $=D_{f}=115 \mathrm{~mm}$
Width of web $=b_{w}=230 \mathrm{~mm}$
Effective depth $=\mathbf{d}=\mathbf{4 5 0} \mathbf{~ m m}$
C/C distance $=\mathbf{3 . 5} \mathbf{m}=\mathbf{3 5 0 0} \mathrm{mm}$
For T beam (IS: 456: 2000, Page Number : 37, C. No :23.1.2)
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<$ C/C distance
$\mathrm{b}_{\mathrm{f}}=\frac{4500}{6}+230+6 \times 115<3500 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=1670 \mathrm{~mm}<3500 \mathrm{~mm}$ (ok)
$\phi=$ Diameter of bar= 16 mm
No of bar $=8$
Ast $=\mathbf{8 X} \frac{\pi}{4} \times \phi^{2}=8 \times \frac{\pi}{4} \times 16^{2}=1608.50 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 1608.50}{0.36 \times 20 \times 1670}=48.30 \mathrm{~mm}$
$\mathrm{xu}<\mathrm{D}_{\mathrm{f}}$
$48.30<115$, The assumption is correct
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8 d}$ \qquad For Fe 415

Xu max $=0.48 \times 450=216 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$48.30 \prec 115$
then section is under reinforced
STEP 4: To find moment of resistance

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d- 0.42 Xu)
$\mathrm{Mu}=0.87 \times 415 \times 1608.50(415-0.42 \times 48.03)=249.55 \mathrm{X} 10^{6} \mathrm{Nmm}=249.55 \mathrm{KNm}$
4) A ' T ' beam having width of flange 2500 mm is required to resist ultimate moment of 1200 KNm , thickness of flange is 150 mm , the width of web is 300 mm and effective depth 900 mm . Find area of steel. Used Fe 250 and M_{15}.

Solution:
To find :- The find area of steel
Given Data:- T beam
Width of flange $=b_{f}=\mathbf{2 5 0 0} \mathrm{mm}$
Depth of flange $=D_{f}=\mathbf{1 5 0} \mathbf{~ m m}$
Width of web $=b_{w}=\mathbf{3 0 0} \mathrm{mm}$
Effective depth $=\mathbf{d}=\mathbf{9 0 0} \mathbf{m m}$
Ultimate Moment= Mu=1200 KNm=1200 x $10^{6} \mathbf{N m m}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $250=\mathbf{F y}=\mathbf{2 5 0} \mathbf{N} / \mathrm{mm}^{2}$
STEP 1: To find depth of neutral axis:
(From page No. 96 IS CODE)
Assume section is balance section, neutral axis lies in flange
$\mathrm{Mu}=0.36$ Fck Xu b f_{f} (d-0.42 Xu)
$1200 \times 10^{6}=0.36 \times 15 \times \mathrm{Xu} \times 2500 \times(900-0.42 \mathrm{xu})$
$1200 \times 10^{6}=13500 \times \mathrm{Xu} \times(900-0.42 \mathrm{xu})$
$1200 \times 10^{6}=12.15 \times 10^{6} \times \mathrm{Xu}-5670 \mathrm{X}^{2} \mathrm{u}$
$5670 \mathrm{X}^{2} \mathrm{u}-12.15 \times 10^{6} \times \mathrm{Xu}+1200 \times 10^{6}=0$
$\mathrm{Xu}=103.79 \mathrm{~mm}$
$\mathrm{Xu}<D_{f}$
The assumption is correct
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
Xu max $=0.53 \mathrm{~d}$ \qquad .For Fe 250
$\mathrm{Xu} \max =\mathbf{0 . 5 3 \times 9 0 0 = 4 7 7 \mathrm { mm }}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$103.79 \prec 477$
Prof. Durgesh H Tupe
then section is under reinforced

STEP 4: To find area of steel

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87$ Fy Ast (d-0.42 Xu)
$1200 \times 10^{6}=0.87 \times 250 \times \operatorname{Ast}(900-0.42 \times 103.79)$
Ast $=6442.30 \mathrm{~mm}^{2}$
Assuming diameter of bar $\phi=40 \mathrm{~mm}$
Number of bar $=\frac{A_{s t}}{\frac{\pi}{4} x \phi^{2}}=\frac{6442.30}{\frac{\pi}{4} x 40^{2}}=5.12 \cong 6$
5) A ' T ' beam having width of flange 1500 mm is required to resist ultimate moment 500 KNm , thickness of flange is 120 mm , the width of web is 300 mm and effective depth 750 mm . Find area of steel. Used Fe 415 and M_{20}.

Solution:
To find :- The find area of steel
Given Data:- T beam
Width of flange $=b_{f}=1500 \mathrm{~mm}$
Depth of flange $=D_{f}=\mathbf{1 2 0} \mathbf{~ m m}$
Width of web $=b_{w}=\mathbf{3 0 0} \mathbf{~ m m}$
Effective depth $=\mathbf{d}=\mathbf{7 5 0} \mathbf{~ m m}$
Ultimate Moment $=\mathbf{M u}=500 \mathrm{KNm}=500 \times 10^{6} \mathbf{N m m}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: To find depth of neutral axis:
(From page No. 96 IS CODE)
Assume section is balance section, neutral axis lies in flange
$\mathrm{Mu}=0.36$ Fck Xu b f_{f} (d-0.42 Xu)
$500 \times 10^{6}=0.36 \times 20 \times \mathrm{Xu} \times 1500 \times(750-0.42 \mathrm{xu})$
$500 \times 10^{6}=8.1 \times 10^{6} \times \mathrm{Xu}-4536 \mathrm{X}^{2} \mathrm{u}$
$4536 \mathrm{X}^{2} \mathrm{u}-8.1 \times 10^{6} \times \mathrm{Xu}+500 \times 10^{6}=0$
$\mathrm{Xu}=64.02 \mathrm{~mm}$
$\mathrm{Xu}<D_{f}$
The assumption is correct
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
Prof. Durgesh H Tupe

Xu max $=0.48 d$ \qquad For Fe 415

Xu $\max =0.48 \times 750=360 \mathrm{~mm}$
STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$64.02 \prec 360$
then section is under reinforced

STEP 4: To find area of steel

For under reinforced section (From page No. 96 IS CODE)
$\mathrm{Mu}=0.87 \mathrm{Fy}$ Ast (d-0.42 Xu)
$500 \times 10^{6}=0.87 \times 415 \times$ Ast (750-0.42 $\times 64.02$)
Ast $=1915.13 \mathrm{~mm}^{2}$
Assuming diameter of bar $\phi=20 \mathrm{~mm}$
Number of bar $=\frac{A_{s t}}{\frac{\pi}{4} x \phi^{2}}=\frac{1915.13}{\frac{\pi}{4} x 20^{2}}=6.09 \cong 6$ (Provide in two rows)

CASE II: Neutral axis lies in web $\left(\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}\right)$
But $D_{f} \leq 0.43 \mathrm{Xu}$ (IS 456:2000, Page Number: 97)
Or
$\frac{D_{f}}{d}<0.2$

Area of flange $=\left(b_{f}-b_{w}\right) \times D_{f}$
Area of Web $=b_{w} \mathrm{Xd}$
$\mathrm{C}_{\mathrm{uf}}=$ Compressive Force in Flange
$\mathrm{C}_{\mathrm{uf}}=\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{D}_{\mathrm{f}} \times 0.45 \times \mathrm{F}_{\mathrm{ck}}$
$\mathrm{C}_{\mathrm{uw}}=$ Compressive Force in Web
$\mathrm{C}_{\mathrm{uw}}=0.36 \times \mathrm{F}_{\mathrm{ck}} \times \mathrm{Xu} \times \mathrm{b}_{\mathrm{w}}$
Design Procedure
Given Data

STEP 1: To find depth of neutral axis: Xu

(From page No. 96 IS CODE)
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times D_{f} \times 0.45 \times F_{c k}+0.36 \times F_{c k} \times$ Xu x $b_{w}=0.87 \times$ Fy x Ast
$\mathrm{Xu}=$?
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad For Fe 250

Xu max $=0.48 \mathrm{~d}$ \qquad For Fe 415

Xu max $=0.46 \mathrm{~d}$ \qquad .For Fe 500

STEP 3: To compare Xu and Xu max

a) If $\mathrm{Xu} \prec \mathrm{Xu}$ max then section is under reinforced
b) If $\mathrm{Xu}=\mathrm{Xu}$ max then section is balance section
c) If $\mathrm{Xu} \succ \mathrm{Xu}$ max then section is over reinforced, if section is over reinforced then consider it as balance section.

STEP 4: To find ultimate moment of resistance

(From page No. 96, C. No: G.2.2. ,IS 456:2000,)
$\mathrm{Mu}=0.45 \times \mathrm{F}_{\mathrm{ck}} \times\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{D}_{\mathrm{f}} \times\left(\mathrm{d}-\frac{D_{f}}{2}\right)+0.36 \mathrm{xF}_{\mathrm{ck}} \times \mathrm{Xu} \mathrm{x}_{\mathrm{w}} \mathrm{x}(\mathrm{d}-0.42 \mathrm{Xu})$

1) Find ultimate moment of resistance of T beam for the following particulars

Width of flange $=1500 \mathrm{~mm}$
Depth of flange $=100 \mathrm{~mm}$
Width of web $=300 \mathrm{~mm}$
Effective depth $=600 \mathrm{~mm}$
Tensile steel $=4500 \mathrm{~mm}^{2}$
Used Fe 415 and M_{20}.

Solution: Given Data:-

Width of Flange $=b_{f}=\mathbf{1 5 0 0} \mathbf{~ m m}$

Depth of flange $=D_{f}=\mathbf{1 0 0} \mathbf{~ m m}$

Width of web $=b_{w}=\mathbf{3 0 0} \mathbf{~ m m}$
Effective depth =d=600 mm
Ast $=4500 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathbf{N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $_{f}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \mathrm{Fck} \mathrm{b}} \mathrm{b}_{\mathrm{f}}$
$X u=\frac{0.87 \times 415 \times 4500}{0.36 \times 20 \times 1500}=150.44 \mathrm{~mm}$
$150.44>100$,The assumption is wrong
Assuming Neutral axis lies in web ($\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}$)
$\mathrm{Cu}=\mathbf{T u}$
$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times D_{f} \times 0.45 \times F_{c k}+0.36 \times F_{c k} \times X_{u} \times b_{w}=0.87 \times$ Fy x Ast
(1500-300) x $100 \times 0.45 \times 20+0.36 \times 20 \times \mathrm{Xu} \times 300=0.87 \times 415 \times 4500$
$\mathrm{Xu}=252.19 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$252.19>100$,The assumption is correct
Check: a) $\mathbf{D}_{\mathrm{f}} \leq 0.43 \mathrm{Xu} \quad$ (P. No: 97 , IS 456:2000)

$$
100 \leq 0.43 \times 252.19=108.44
$$

$\frac{D_{f}}{d} \prec 0.2$
$\frac{100}{600} \prec 0.2$
$0.16 \prec 0.2$ (OK)
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8 d}$ \qquad .For Fe 415

Xu max $=0.48 \times 600=288 \mathrm{~mm}$
STEP 3: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$252.19 \prec 288$
then section is under reinforced

STEP 4: To find moment of resistance

(From page No. 96, C. No: G.2.2 ,IS 456:2000,)
$\mathrm{Mu}=0.45 \times \mathrm{F}_{\mathrm{ck}} \mathrm{x}\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{D}_{\mathrm{f}} \times\left(\mathrm{d}-\frac{D_{f}}{2}\right)+0.36 \times \mathrm{F}_{\mathrm{ck}} \times \mathrm{Xu} \mathrm{x}_{\mathrm{w}} \mathrm{x}(\mathrm{d}-0.42 \mathrm{Xu})$
$\mathrm{Mu}=0.45 \times 20 \times(1500-300) \times 100 \times\left(600-\frac{100}{2}\right)+0.36 \times 20 \times 252.19 \times 300 \times(600-0.42 \times 252.19)$
$\mathrm{Mu}=863.14 \times 10^{6} \mathrm{Nmm}=863.14 \mathrm{KNm}$
2) Find ultimate moment of resistance of T beam for the following particulars

Width of flange $=1200 \mathrm{~mm}$
Depth of flange $=100 \mathrm{~mm}$
Width of web $=275 \mathrm{~mm}$
Effective depth $=550 \mathrm{~mm}$
Tensile steel $=4$ bars of 25 mm diameter \& 4 bars of 16 mm diameter Used Fe 415 and M_{15}.

Solution: Given Data:-

Width of Flange $=b_{f}=\mathbf{1 2 0 0} \mathbf{~ m m}$
Depth of flange $=D_{f}=100 \mathrm{~mm}$
Width of web $=b_{w}=275 \mathrm{~mm}$
Effective depth $=\mathbf{d}=\mathbf{5 5 0} \mathbf{~ m m}$
Ast $=\mathbf{4 x} \frac{\pi}{4} \mathrm{X} \phi_{1}{ }^{2}+4 \frac{\pi}{4} \mathrm{X} \phi_{2}{ }^{2}$

Ast $=\mathbf{4 x} \frac{\pi}{4} \times 25^{2}+4 \frac{\pi}{4} \times 16^{2}$
$=2767.75 \mathrm{~mm}^{2}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: To find depth of neutral axis : $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $_{\mathrm{f}}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 2767.75}{0.36 \times 20 \times 1200}=152.21 \mathrm{~mm}$
$152.21>100$,The assumption is wrong
Assuming Neutral axis lies in web $\left(\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}\right)$
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times D_{f} \times 0.45 \times F_{c k}+0.36 \times F_{c k} \times X_{u} \times b_{w}=0.87 \times$ Fy x Ast
(1200-275) x $100 \times 0.45 \times 15+0.36 \times 15 \times \mathrm{Xu} \times 275=0.87 \times 415 \times 2767.75$
$\mathrm{Xu}=252.47 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$252.47>100$,The assumption is correct
Check: a) $\mathbf{D}_{\mathrm{f}} \leq 0.43 \mathrm{Xu} \quad$ (P. No: 97 , IS 456:2000)

$$
100 \leq 0.43 \times 252.19=108.44
$$

$\frac{D_{f}}{d} \prec 0.2$
$\frac{100}{600} \prec 0.2$
$0.16 \prec 0.2$ (OK)
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8 d}$ \qquad For Fe 415
$\mathrm{Xu} \max =0.48 \times 550=264 \mathrm{~mm}$

STEP 3: To compare Xu and Xu max

$\mathrm{Xu} \prec \mathrm{Xu}$ max
252.47 々 264
then section is under reinforced
STEP 4: To find moment of resistance
(From page No. 96, C. No: G.2.2 ,IS 456:2000,)
$\mathrm{Mu}=0.45 \times \mathrm{F}_{\mathrm{ck}} \times\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{D}_{\mathrm{f}} \mathrm{x}\left(\mathrm{d}-\frac{D_{f}}{2}\right)+0.36$ x $_{\mathrm{ck}} \times \mathrm{Xu} \mathrm{x}_{\mathrm{w}} \mathrm{x}(\mathrm{d}-0.42 \mathrm{Xu})$
$\mathrm{Mu}=0.45 \times 15 \times(1200-275) \times 100 \times\left(550-\frac{100}{2}\right)+0.36 \times 15 \times 252.47 \times 275 \times(550-0.42 \times 252.47)$ $\mathrm{Mu}=478.64 \times 10^{6} \mathrm{Nmm}=478.64 \mathrm{KNm}$

CASE III: Neutral axis lies in web $\left(\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}\right)$
$\frac{D_{f}}{d}>0.2$ (IS 456:2000, Page Number: 97)

> Area of flange $=\left(b_{f}-b_{w}\right) \times D_{f}$
> Area of Web $=b_{w} \times d$
> $C_{u f}=$ Compressive Force in Flange
> $C_{u f}=\left(b_{f}-b_{w}\right) \times Y_{f} \times 0.45 \times F_{c k}$
> $C_{u w}=$ Compressive Force in Web
> $C_{u w}=0.45 \times F_{c k} \times$ Xu $\times b_{w}$
> $\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}} \quad($ P. No: 97, IS $456: 2000)$
> Design Procedure
> Given Data

STEP 1: To find depth of neutral axis: $\mathbf{X u}$
(From page No. 96 IS CODE)
$\mathrm{Cu}=\mathbf{T u}$
$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times \mathrm{Y}_{\mathrm{f}} \times 0.45 \times \mathrm{F}_{\mathrm{ck}}+0.36 \times \mathrm{F}_{\mathrm{ck}} \times \mathrm{Xu} \times \mathrm{b}_{\mathrm{w}}=0.87 \times$ Fy \times Ast
$\mathrm{Xu}=$?
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =0.53 \mathrm{~d}$ \qquad For Fe 250
$\mathrm{Xu} \max =0.48 \mathrm{~d}$ \qquad For Fe 415
$X u \max =0.46 d$ \qquad For Fe 500

STEP 3: To compare $X u$ and $X u$ max
a) If $\mathrm{Xu} \prec \mathrm{Xu}$ max then section is under reinforced
b) If $\mathrm{Xu}=\mathrm{Xu}$ max then section is balance section
c) If $\mathrm{Xu} \succ \mathrm{Xu}$ max then section is over reinforced, if section is over reinforced then consider it as balance section.

STEP 4: To find moment of resistance

(From page No. 97 , C. No: G.2.2.1 ,IS 456:2000,)
$\mathrm{Mu}=0.45$ x F $_{\mathrm{ck}} \times\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{Y}_{\mathrm{f}} \times\left(\mathrm{d}-\frac{Y_{f}}{2}\right)+0.36$ x F $_{\mathrm{ck}} \times \mathrm{XX} \mathrm{X}_{\mathrm{w}} \times(\mathrm{d}-0.42 \mathrm{Xu})$

1) The simply supported beam space at $2.5 \mathrm{~m} \mathrm{C} / \mathrm{C}$ supported span is 5 m , slab thickness is 100 mm , width of web is 300 mm , overall depth is 450 mm , cover to the steel centre is 65 mm , the reinforcement is 8 bars of 25 mm diameter in two layers. Find ultimate moment of resistance of T beam. Use M_{20} and Fe 415.

Solution: Given Data:-

C/C Spacing $=2.5 \mathrm{~m}=2500 \mathrm{~mm}$
$\mathrm{l}=\mathrm{l}_{\mathbf{0}}=\mathbf{5} \mathbf{~ m}=\mathbf{5 0 0 0} \mathbf{~ m m}$
Depth of flange $=D_{f}=100 \mathrm{~mm}$
Width of web $=b_{w}=300 \mathrm{~mm}$
Overall depth $=D=450 \mathrm{~mm}$
Effective Cover $=d^{\prime}=\mathbf{6 5} \mathbf{~ m m}$
Effective depth $=d=D-d^{\prime}=\mathbf{4 5 0 - 6 5}=385 \mathrm{~mm}$
$\phi=25 \mathrm{~mm}$
$\mathrm{N}=8$
For T beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<\mathrm{C} / \mathrm{C}$ distance
$b_{f}=\frac{5000}{6}+300+6 \times 100<2500 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=1733.33 \mathrm{~mm}<2500 \mathrm{~mm}$ (ok)

Ast $=\mathbf{8 x} \frac{\pi}{4} \times \phi^{2}=\mathbf{8 x} \frac{\pi}{4} \times 25^{2}=3926.99 \mathrm{~mm}^{2}$
$\mathrm{M}_{20}=\mathrm{Fck}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
STEP 1: To find depth of neutral axis: $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $_{\mathrm{f}}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 3926.99}{0.36 \times 20 \times 1733.33}=113.61 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$113.61>100$, The assumption is wrong
Assuming Neutral axis lies in web $\left(\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}\right)$
$\frac{D_{f}}{d}>0.2$
$\frac{100}{385}>0.2$
$0.2597>0.2$
This is CASE III
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}} \quad$ (P. No: 97 , IS 456:2000)

$\mathrm{Cu}=\mathbf{T u}$

$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times Y_{f} \times 0.45 \times F_{c k}+0.36 \times F_{c k} \times$ Xu x $b_{w}=0.87 \times$ Fy x Ast
(1733.33-300) x $(0.15 \mathrm{Xu}+0.65 \times 100) \times 0.45 \times 20+0.36 \times 20 \times \mathrm{Xu} \times 300=0.87 \times 415 \mathrm{x}$ 3926.99
$\mathrm{Xu}=141.56 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$141.56>100$, The assumption is correct
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}} \quad$ ($\mathrm{P} . \mathrm{No}: 97$, IS 456:2000)
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}}=0.15 \mathrm{x} 141.56+0.65 \times 100=86.23 \mathrm{~mm}$

STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
$X u \max =0.48 d$ \qquad For Fe 415
$X u \max =0.48 \times 385=184.8 \mathrm{~mm}$
STEP 3: To compare $X u$ and $X u$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$141.56 \prec 184.8$
then section is under reinforced

STEP 4: To find moment of resistance

(From page No. 97 , C. No: G.2.2.1 ,IS 456:2000)
$\mathrm{Mu}=0.45 \times \mathrm{F}_{\mathrm{ck}} \times\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{Y}_{\mathrm{f}} \times\left(\mathrm{d}-\frac{Y_{f}}{2}\right)+0.36 \times \mathrm{F}_{\mathrm{ck}} \times \mathrm{Xu} \mathrm{x}_{\mathrm{w}} \mathrm{x}(\mathrm{d}-0.42 \mathrm{Xu})$
$\mathrm{Mu}=0.45 \times 20 \times(1733.33-300) \times 86.23 \times\left(385-\frac{86.23}{2}\right)+0.36 \times 20 \times 141.56 \times 300 \times(385-0.42 \times 141.56)$ $\mathrm{Mu}=479.84 \times 10^{6} \mathrm{Nmm}=479.84 \mathrm{KNm}$
2) The simply supported beam having width of flange is 1900 mm , slab thickness is 100 mm , width of web is 350 mm , overall depth is 500 mm , cover to the steel centre is 50 mm , the reinforcement is 8 bars of 25 mm diameter in two layers. Find ultimate moment of resistance of T beam. Use M_{20} and Fe 415.

Solution: Given Data:-

Width of flange $=b_{f}=1900 \mathrm{~mm}$
Depth of flange $=D_{f}=100 \mathrm{~mm}$
Width of web $=b_{w}=\mathbf{3 5 0} \mathbf{~ m m}$
Overall depth $=\mathrm{D}=\mathbf{5 0 0} \mathbf{~ m m}$
Effective Cover $=d^{\prime}=\mathbf{5 0} \mathbf{~ m m}$
Effective depth $=$ d= $D-d^{\prime}=\mathbf{5 0 0}-50=\mathbf{4 5 0} \mathrm{mm}$
$\phi=25 \mathrm{~mm}$
$\mathrm{N}=8$
Ast $=\mathbf{8} \mathbf{x} \frac{\pi}{4} \times \phi^{2}=\mathbf{8} \mathbf{x} \frac{\pi}{4} \times 25^{2}=3926.99 \mathrm{~mm}^{2}$
$\mathbf{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
STEP 1: To find depth of neutral axis : $\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ (Neutral axis lies in flange)
(From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

0.36 FckXub $_{\mathrm{f}}=0.87$ Fy Ast

$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \mathrm{Fck} \mathrm{b}_{\mathrm{f}}}$
$\mathrm{Xu}=\frac{0.87 \times 415 \times 3926.99}{0.36 \times 20 \times 1900}=103.643 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$103.643>100$,The assumption is wrong
Assuming Neutral axis lies in web $\left(\mathrm{Xu}>\mathrm{D}_{\mathrm{f}}\right)$
$\frac{D_{f}}{d}>0.2$
$\frac{100}{450}>0.2$
$0.2222>0.2$
This is CASE III
$Y_{f}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}} \quad$ (P. No: 97, IS 456:2000)
$\mathbf{C u}=\mathbf{T u}$
$\mathrm{C}_{\mathrm{uf}}+\mathrm{C}_{\mathrm{uw}}=\mathbf{T u}$
$\left(b_{f}-b_{w}\right) \times Y_{f} \times 0.45 \times F_{c k}+0.36 \times F_{c k} \times$ Xu $^{\prime} \mathrm{b}_{\mathrm{w}}=0.87 \times$ Fy x Ast
(1900-350) x ($0.15 \mathrm{Xu}+0.65 \times 100) \times 0.45 \times 20+0.36 \times 20 \times \mathrm{Xu} \times 350=0.87 \times 415 \times$ 3926.99
$\mathrm{Xu}=110.81 \mathrm{~mm}$
$\mathrm{xu}>\mathrm{D}_{\mathrm{f}}$
$110.81>100$, The assumption is correct
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}} \quad$ (P. No: 97 , IS 456:2000)
$\mathrm{Y}_{\mathrm{f}}=0.15 \mathrm{Xu}+0.65 \mathrm{D}_{\mathrm{f}}=0.15 \mathrm{x} 110.81+0.65 \times 100=81.62 \mathrm{~mm}$
STEP 2: To find depth of critical neutral axis (From page No. 70 IS CODE)
Xu max $=0.48 \mathrm{~d}$ \qquad .For Fe 415

Xu max $=0.48 \times 450=216 \mathrm{~mm}$

STEP 3: To compare Xu and Xu max

$\mathrm{Xu} \prec \mathrm{Xu}$ max
$110.81 \prec 216$
then section is under reinforced

STEP 4: To find moment of resistance

(From page No. 97, C. No: G.2.2.1 ,IS 456:2000)
$\mathrm{Mu}=0.45 \times \mathrm{F}_{\mathrm{ck}} \times\left(\mathrm{b}_{\mathrm{f}}-\mathrm{b}_{\mathrm{w}}\right) \times \mathrm{Y}_{\mathrm{f}} \times\left(\mathrm{d}-\frac{Y_{f}}{2}\right)+0.36 \mathrm{xF}_{\mathrm{ck}} \times \mathrm{Xu} \mathrm{x} \mathrm{b}_{\mathrm{w}} \mathrm{x}(\mathrm{d}-0.42 \mathrm{Xu})$
$\mathrm{Mu}=0.45 \times 20 \times(1900-350) \times 81.62 \times\left(450-\frac{81.62}{2}\right)+0.36 \times 20 \times 110.81 \times 350 \times(450-0.42 \times 110.81)$
$\mathrm{Mu}=578.57 \times 10^{6} \mathrm{Nmm}=578.57 \mathrm{KNm}$
Type II: To find area of steel

Stepwise Procedure

To find :- The area of steel (Ast)
Given Data:- $\mathbf{b}_{\mathbf{f}}, \mathbf{b}_{\mathbf{w}}, \mathbf{d}, \mathbf{F y}$, Fck, Design Moment $\left(\mathbf{M}_{\mathrm{d}}\right)$ or loading
Effective depth =d = D - Effective cover
Effective depth =d = D - d'
Effective cover $=\mathbf{d}^{\prime}=\mathbf{C l e a r} \operatorname{cover}+\frac{\phi}{2}$
STEP 1: To find ultimate moment

Assuming $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}$ (Balance Section)

$\mathbf{M u}_{1}=\mathbf{0 . 3 6} \times \mathbf{F}_{\mathrm{ck}} \mathbf{x} \mathbf{X u} \times \mathrm{b}_{\mathrm{f}} \mathbf{X}(\mathbf{d}-\mathbf{0 . 4 2} \mathbf{x} \mathbf{X u})$

Put $\mathbf{X u}=\mathrm{D}_{\mathrm{f}}$

STEP 2: To compare $M_{u 1}$ and M_{d}
If $\mathbf{M}_{\mathbf{d}} \leq \mathbf{M u}_{\mathbf{1}}$ then to find area of steel
The assumption is correct
NA lies in flange
STEP 3: To calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
Assume diameter of bar $=\boldsymbol{\Phi}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}$

$$
\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{~b}_{\mathrm{w}} \mathrm{~d}}{\mathrm{Fy}} .
$$

Maximum Area of steel for beam
Ast $_{\text {max }}=0.04 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$ \qquad
$\mathrm{A}_{\mathrm{st} \text { min }}<\mathrm{A}_{\mathrm{st} \text { max }}$
STEP 4: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
0.36 FckXub $_{\mathrm{f}}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck } \mathrm{b}_{\mathrm{f}}}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$ Assumption is correct
STEP 5:: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 5 3} \mathbf{d}$ \qquad For Fe 250
$\mathbf{X u} \max =0.48 \mathrm{~d}$ For Fe 415
$\mathrm{Xu} \max =0.46 \mathrm{~d}$ \qquad For Fe 500

STEP 6: To compare Xu and Xu max

a) If $\mathrm{Xu} \prec \mathrm{Xu}$ max then section is under reinforced
b) If $\mathrm{Xu}=\mathrm{Xu}$ max then section is balance section
c) If $\mathrm{Xu} \succ \mathrm{Xu}$ max then section is over reinforced, if section is over reinforced then consider it as balance section.

1) Find area of steel required in T beam for the following particulars

Simply supported span $=7 \mathrm{~m}$
Slab thickness $=120 \mathrm{~mm}$
Width of web $=230 \mathrm{~mm}$
Effective depth $=560 \mathrm{~mm}$
Inclusive working load on beam $=50 \mathrm{KN} / \mathrm{m}$
Spacing of beam $=4 \mathrm{~m} \mathrm{c} / \mathrm{c}$
Used Fe 415 and M_{20}.
Solution: Given Data:- Simply supported beam
C/C Spacing $=\mathbf{4 m}=\mathbf{4 0 0 0} \mathrm{mm}$
$\mathrm{l}=\mathrm{l}_{0}=\mathbf{7 m}=\mathbf{7 0 0 0} \mathrm{mm}$
Depth of flange $=D_{f}=\mathbf{1 2 0} \mathbf{~ m m}$
Width of web $=b_{w}=\mathbf{2 3 0} \mathbf{~ m m}$

Effective depth $=\mathbf{d}=\mathbf{5 6 0} \mathbf{~ m m}$

For T beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<$ C/C distance
$\mathrm{b}_{\mathrm{f}}=\frac{7000}{6}+230+6 \times 120<4000 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=2116.67 \mathrm{~mm}<4000 \mathrm{~mm}$ (ok)
Inclusive working load on beam $=\mathrm{W}=50 \mathrm{KN} / \mathrm{m}$
Factored Load $=\mathrm{Wu}=1.5 \times \mathrm{W}=1.5 \times 50=75 \mathrm{KN} / \mathrm{m}$

L
7 m
Maximum bending moment $=\frac{W u l^{2}}{8}=\frac{75 \times 7^{2}}{8}=459.38 \mathrm{KNm}$
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
STEP 1: To find ultimate moment

Assuming $\mathbf{X u}=\mathrm{D}_{\mathrm{f}}$ (Balance Section)

Put $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}=\mathbf{1 2 0} \mathbf{~ m m}$
$\mathrm{Mu}_{1}=\mathbf{0 . 3 6 \times 2 0 \times 1 2 0 \times 2 1 1 6 . 6 7 \times (5 6 0 - 0 . 4 2 \times 1 2 0)}$
$\mathrm{Mu}_{1}=931.96 \times 10^{6} \mathrm{Nmm}=\mathbf{9 3 1 . 9 6} \mathbf{~ K N m}$
STEP 2: To compare $M_{u 1}$ and M_{d}
$\mathbf{M}_{\mathrm{d}} \leq \mathrm{Mu}_{1}$
$459.38 \leq 931.96$
The assumption is correct
NA lies in flange
STEP 3: To calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
$\mathbf{A}_{\text {st }}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 459.38 \times 10^{6}}{20 \times 2116.67 \times 560^{2}}}\right] 2116.67 \times 560$
$\mathrm{A}_{\mathrm{st}}=\mathbf{2 3 7 1 . 6 4} \mathbf{~ m m}^{\mathbf{2}}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{2371.64}{(\pi / 4) \times 20^{2}}=7.55 \cong 8$
$\mathrm{A}_{\mathrm{st} \text { min }}=\frac{0.85 \mathrm{~b}_{\mathrm{w}} \mathrm{d}}{\mathrm{Fy}}$... IS CODE PAGE NO 47
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \times 230 \times 560}{415}=263.81 \mathrm{~mm}^{2}$
Maximum Area of steel for beam
Ast ${ }_{\text {Max }}=0.04 \mathrm{x} \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$ \qquad IS CODE PAGE NO 47

Assuming Effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Overall depth $=\mathrm{D}=\mathrm{d}+\mathrm{d}^{\prime}=560+50=610 \mathrm{~mm}$
Ast ${ }_{\text {max }}=0.04 \times 230 \times 610$
Ast ${ }_{\text {Max }}=5612 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{st} \min }<\mathrm{A}_{\mathrm{st} \text { max }}$
$263.81<5612$ (ok)

STEP 4: To find depth of neutral axis (From page No. 96 IS CODE)

$\mathrm{Cu}=\mathrm{Tu}$
$0.36 \mathrm{FckXub}=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }_{\mathrm{f}}}=\frac{0.87 \times 415 \times 2371.64}{0.36 \times 20 \times 2116.67}=54.89 \mathrm{~mm}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$
$54.89<100$, Assumption is correct

STEP 5:: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8 d}$ \qquad .For Fe 415
$\mathrm{Xu} \max =\mathbf{0 . 4 8 \times 5 6 0} \mathbf{= 2 6 8 . 8}$
STEP 6: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max

54.89 < 268.8

then section is under reinforced
2) Find area of steel required in T beam for the following particulars

Width of flange $=1100 \mathrm{~mm}$
Slab thickness $=120 \mathrm{~mm}$
Width of web $=275 \mathrm{~mm}$
Overall Depth $=650 \mathrm{~mm}$
Effective cover $=50 \mathrm{~mm}$
Effective depth $=600 \mathrm{~mm}$
Ultimate Moment $=380 \mathrm{KNm}$
Used Fe 415 and M_{15}.

Solution: Given Data:-

Width of flange $=b_{f}=1100 \mathrm{~mm}$
Slab thickness $=\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}$
Width of web $=b_{w}=275 \mathrm{~mm}$
Overall Depth $=\mathrm{D}=650 \mathrm{~mm}$
Effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=600 \mathrm{~mm}$
Ultimate Moment $=\mathrm{M}_{\mathrm{d}}=380 \mathrm{KNm}=380 \times 10^{6} \mathrm{Nmm}$
$\mathrm{M}_{15}=\mathrm{Fck}=15 \mathrm{~N} / \mathrm{mm}^{2}$
Fe $415=\mathbf{F y}=\mathbf{4 1 5} \mathbf{N} / \mathrm{mm}^{2}$
STEP 1: To find ultimate moment
Assuming $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}$ (Balance Section)

Put $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}=\mathbf{1 2 0} \mathbf{~ m m}$
$\mathrm{Mu}_{1}=0.36 \times 15 \times 120 \times 1100 \times(600-0.42 \times 120)$
$\mathrm{Mu}_{1}=391.75 \times 10^{6} \mathbf{N m m}=391.75 \mathrm{KNm}$
STEP 2: To compare $M_{u 1}$ and M_{d}
$\mathbf{M}_{\mathrm{d}} \leq \mathrm{Mu}_{1}$
$\mathbf{3 8 0} \leq \mathbf{3 9 1 . 7 5}$
The assumption is correct
Prof. Durgesh H Tupe

NA lies in flange

STEP 3: To calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
$\mathbf{A}_{\text {st }}=\frac{0.5 \times 15}{415}\left[1-\sqrt{1-\frac{4.6 \times 380 \times 10^{6}}{15 \times 1100 \times 600^{2}}}\right] 1100 \times 600$
$A_{s t}=1907.5 \mathrm{~mm}^{2}$
Assume diameter of $\mathbf{b a r}=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{A s t}{(\pi / 4) \times \phi^{2}}=\frac{1907.50}{(\pi / 4) \times 20^{2}}=6.07 \cong 7$
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{~b}_{\mathrm{w}} \mathrm{d}}{\mathrm{Fy}}$.
$\mathrm{A}_{\text {st min }}=\frac{0.85 \times 275 \times 600}{415}=337.91 \mathrm{~mm}^{2}$
Maximum Area of steel for beam
Ast ${ }_{\text {Max }}=0.04 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$
Ast ${ }_{\text {Max }}=0.04 \times 275 \times 650$
Ast ${ }_{\text {Max }}=7150 \mathrm{~mm}^{2}$
$\mathrm{A}_{\mathrm{st} \text { min }}<\mathrm{A}_{\mathrm{st} \text { max }}$
$337.95<7150$ (ok)

STEP 4: To find depth of neutral axis (From page No. 96 IS CODE)

$\mathrm{Cu}=\mathrm{Tu}$
0.36FckXub $=0.87$ Fy Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }_{\mathrm{f}}}=\frac{0.87 \times 415 \times 1907.50}{0.36 \times 15 \times 1100}=115.94 \mathrm{~mm}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$
115.94<120, Assumption is correct

STEP 5:: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8} \mathbf{d}$.For Fe 415

Xu max $=0.48 \times 600=288 \mathrm{~mm}$

STEP 6: To compare $\mathbf{X u}$ and $\mathbf{X u}$ max
$\mathrm{Xu} \prec \mathrm{Xu}$ max

115.94 < 288

then section is under reinforced

Type III: Design of ' T ' and ' L ' section

1) Design a ' T ' beam for a hall 6 mX 15 m having beam 3 m centre to centre, the slab thickness is 120 mm cast monolithically with beam having live load is 3 $\mathrm{KN} / \mathrm{m}^{2}$, floor finish is $1 \mathrm{KN} / \mathrm{m}^{2}$. Used M_{15} and Fe 415.

Solution: Given Data:- T beam
Hall Size 6 m X 15 m
C/C Spacing $=\mathbf{3 m}=\mathbf{3 0 0 0} \mathrm{mm}$
$\mathrm{l}=\mathbf{6 m}=\mathbf{6 0 0 0} \mathrm{mm}$
Depth of flange/slab= $D_{f}=\mathbf{1 2 0} \mathbf{~ m m}$
Live Load $=3 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415=\mathrm{Fy}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$

STEP 1: To find dimensions
Overall Depth $=\mathrm{D}=\frac{l}{12}$ to $\frac{l}{15}$
Overall Depth $=\mathrm{D}=\frac{6000}{12}$ to $\frac{6000}{15}$
Overall Depth=D $=500 \mathrm{~mm}$ to 400 mm
Assuming $\mathrm{D}=500 \mathrm{~mm}$
Assuming effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=$ d= D-d' $=500-50=450 \mathrm{~mm}$
Width of beam
$\mathrm{b}_{\mathrm{w}}=\frac{D}{3}$ to $\frac{2 D}{3}$
$\mathrm{b}_{\mathrm{w}}=\frac{500}{3}$ to $\frac{2 \times 500}{3}$
$\mathrm{b}_{\mathrm{w}}=166.66 \mathrm{~mm}$ to 333.33 mm
Assu $\min g \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}$

For T beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<\mathrm{C} / \mathrm{C}$ distance
$l_{0}=1+\frac{b_{w}}{2}+\frac{b_{w}}{2}=6000+\frac{300}{2}+\frac{300}{2}=6300$
$\mathrm{b}_{\mathrm{f}}=\frac{6300}{6}+300+6 \times 120<3000 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=2070 \mathrm{~mm}<3000 \mathrm{~mm}$ (ok)

STEP 2: To calculate loading

Loading

a) Live Load $=3 \mathrm{KN} / \mathrm{m}^{2}$
b) Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
c) Self Weight of slab $=$ Df x Density of concrete

$$
=0.120 \times 25=3 \mathrm{KN} / \mathrm{m}^{2}
$$

Total Load $=\mathrm{a}+\mathrm{b}+\mathrm{c}=7 \mathrm{KN} / \mathrm{m}^{2}$
Load per meter $=7 \times$ C/C distance $=7 \times 3=21 \mathrm{KN} / \mathrm{m}^{2}$
Self Weight of web $=$ Area of web \times Density of concrete
Self Weight of web $=0.3 \times 0.38 \times 25=2.850 \mathrm{KN} / \mathrm{m}^{2}$
Total Load $=21+2.850=23.850 \mathrm{KN} / \mathrm{m}^{2}$
Factored load $=\mathrm{Wu}=1.5 \times 23.850=35.775 \mathrm{KN} / \mathrm{m}^{2}$

Maximum bending moment $=\mathrm{M}_{\mathrm{d}}=\frac{W u 1_{0}{ }^{2}}{8}=\frac{35.775 \times 6.3^{2}}{8}=177.49 \mathrm{KN} . \mathrm{m}$

STEP 3: To find ultimate moment

Assuming $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}$ (Balance Section)

Put $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}=\mathbf{1 2 0} \mathrm{mm}$
$\mathrm{Mu}_{1}=\mathbf{0 . 3 6 \times 1 5 \times 1 2 0 \times 2 0 7 0 \times (4 5 0 - 0 . 4 2 \times 1 2 0)}$
$\mathrm{Mu}_{1}=536 \mathrm{X} 10^{6} \mathrm{Nmm}=536 \mathrm{KNm}$
STEP 4: To compare $M_{u 1}$ and M_{d}
$\mathbf{M}_{\mathrm{d}} \leq \mathrm{Mu}_{1}$
$\mathbf{1 7 7 . 7 9} \leq 536$
The assumption is correct
NA lies in flange
STEP 5: To calculate area of steel
$\mathbf{A}_{s t}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
$\mathbf{A}_{\text {st }}=\frac{0.5 \times 15}{415}\left[1-\sqrt{1-\frac{4.6 \times 177.49 \times 10^{6}}{15 \times 2070 \times 450^{2}}}\right] 2070 \times 450$
$\mathrm{A}_{\mathrm{st}}=\mathbf{1 1 3 2 . 4 0} \mathrm{mm}^{\mathbf{2}}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1132.40}{(\pi / 4) \times 20^{2}}=3.60 \cong 4$

Maximum Area of steel for beam
Ast ${ }_{\text {Max }}=0.04 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$ \qquad
Ast Max $=0.04 \times 300 \times 500$
Ast ${ }_{\mathrm{Max}}=6000 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st min }}<\mathrm{A}_{\text {st max }}$
$276.51<6000$ (ok)
STEP6: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \text { Fck b }_{\mathrm{f}}}=\frac{0.87 \times 415 \times 1132.40}{0.36 \times 15 \times 2070}=36.57 \mathrm{~mm}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$
$36.57<120$, Assumption is correct
STEP 7: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathrm{Xu} \max =\mathbf{0 . 4 8} \mathbf{d}$.For Fe 415
$\mathrm{Xu} \max =0.48 \times 450=216 \mathrm{~mm}$
STEP 8: To compare $\mathbf{X u}$ and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max

$36.57<216$

then section is under reinforced
2) Design intermediate beam for the slab beam system given below by IS Code method using M_{15} and Fe 415.
Udl on slab $=5 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
Slab Thickness $=100 \mathrm{~mm}$, Use M_{15} and Fe 415 for following figure

Solution: Given Data:- T beam
Hall Size 6 m X 15
\mathbf{C} / \mathbf{C} Spacing $=\mathbf{3 m}=\mathbf{3 0 0 0} \mathrm{mm}$

$\mathrm{l}=\mathbf{6 m}=\mathbf{6 0 0 0} \mathrm{mm}$

Depth of flange/ slab= $D_{f}=\mathbf{1 0 0} \mathbf{~ m m}$

Udl on slab $=5 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{Fe} \mathbf{4 1 5}=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{M}_{15}=$ Fck $=15 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: To find dimensions

Overall Depth $=\mathrm{D}=\frac{l}{12}$ to $\frac{l}{15}$
Overall Depth $=\mathrm{D}=\frac{6000}{12}$ to $\frac{6000}{15}$
Overall Depth=D $=500 \mathrm{~mm}$ to 400 mm
Assuming D= 500 mm
Assuming effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=$ D-d' $=500-50=450 \mathrm{~mm}$
Width of beam
$\mathrm{b}_{\mathrm{w}}=\frac{D}{3}$ to $\frac{2 D}{3}$
$\mathrm{b}_{\mathrm{w}}=\frac{500}{3}$ to $\frac{2 \times 500}{3}$
$\mathrm{b}_{\mathrm{w}}=166.66 \mathrm{~mm}$ to 333.33 mm
Assu $\min g \mathrm{~b}_{\mathrm{w}}=300 \mathrm{~mm}$
For T beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{6}+b_{w}+6 D_{f}<\mathrm{C} / \mathrm{C}$ distance
$l_{0}=1+\frac{b_{w}}{2}+\frac{b_{w}}{2}=6000+\frac{300}{2}+\frac{300}{2}=6300$
$\mathrm{b}_{\mathrm{f}}=\frac{6300}{6}+300+6 \times 100<3000 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=1950 \mathrm{~mm}<3000 \mathrm{~mm}$ (ok)

STEP 2: To calculate loading

Loading

a) Live Load (Udl) $=5 \mathrm{KN} / \mathrm{m}^{2}$
b) Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
c) Self Weight of slab $=$ Df x Density of concrete

$$
=0.1 \times 25=2.5 \mathrm{KN} / \mathrm{m}^{2}
$$

Total Load $=\mathrm{a}+\mathrm{b}+\mathrm{c}=8.5 \mathrm{KN} / \mathrm{m}^{2}$
Load per meter $=8.5 \times$ C/C distance $=8.5 \times 3=25.5 \mathrm{KN} / \mathrm{m}^{2}$
Self Weight of web $=$ Area of web \times Density of concrete
Self Weight of web $=0.3 \times 0.4 \times 25=3 \mathrm{KN} / \mathrm{m}^{2}$
Total Load $=25.5+3=28.3 \mathrm{KN} / \mathrm{m}^{2}$
Factored load $=\mathrm{Wu}=1.5 \times 28.3=42.75 \mathrm{KN} / \mathrm{m}^{2}$
Maximum bending moment $=\mathrm{M}_{\mathrm{d}}=\frac{W u 1_{0}{ }^{2}}{8}=\frac{42.75 \times 6.3^{2}}{8}=212.09 \mathrm{KN} . \mathrm{m}$

STEP 3: To find ultimate moment

Assuming Xu $=\mathrm{D}_{\mathrm{f}}$ (Balance Section)

Put $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}=\mathbf{1 0 0} \mathrm{mm}$
$\mathrm{Mu}_{1}=\mathbf{0 . 3 6} \times 15 \times 100 \times 1950 \times(450-\mathbf{0 . 4 2} \times 100)$
$\mathrm{Mu}_{1}=429.64 \times 10^{6} \mathrm{Nmm}=429.64 \mathrm{KNm}$

STEP 4: To compare $M_{u 1}$ and M_{d}
$\mathbf{M}_{\mathrm{d}} \leq \mathrm{Mu}_{1}$

$212.09 \leq 429.64$

The assumption is correct
NA lies in flange
STEP 5: To calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
$\mathbf{A}_{\mathrm{st}}=\frac{0.5 \times 15}{415}\left[1-\sqrt{1-\frac{4.6 \times 212.09 \times 10^{6}}{15 \times 1950 \times 450^{2}}}\right] 1950 \times 450$
$\mathrm{A}_{\mathrm{st}}=\mathbf{1 3 6 4 . 7 7} \mathrm{mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1364.77}{(\pi / 4) \times 20^{2}}=4.34 \cong 5$
$\mathrm{A}_{\mathrm{st} \text { min }}=\frac{0.85 \mathrm{~b}_{\mathrm{w}} \mathrm{d}}{\mathrm{Fy}}$.
$\mathrm{A}_{\text {st min }}=\frac{0.85 \times 300 \times 450}{415}=276.51 \mathrm{~mm}^{2}$
Maximum Area of steel for beam
Ast ${ }_{\text {Max }}=0.04 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$
Ast ${ }_{\text {Max }}=0.04 \times 300 \times 500$
Ast Max $=6000 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st min }}<\mathrm{A}_{\text {st max }}$
$276.51<6000$ (ok)
STEP 6: To find depth of neutral axis (From page No. 96 IS CODE)

$$
\mathrm{Cu}=\mathrm{Tu}
$$

$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87 \mathrm{Fy}$ Ast
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \mathrm{Fck} \mathrm{b}_{\mathrm{f}}}=\frac{0.87 \times 415 \times 1364.77}{0.36 \times 15 \times 1950}=46.79 \mathrm{~mm}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$
$46.79<100$, Assumption is correct
STEP 7: To find depth of critical neutral axis (From page No. 70 IS CODE)
Xu max $=\mathbf{0 . 4 8 d}$
.For Fe 415
Xu max $=0.48 \times 450=216 \mathrm{~mm}$

STEP 8: To compare Xu and Xu max

$\mathrm{Xu} \prec \mathrm{Xu}$ max
46.79 < 216
then section is under reinforced
3) Design 'L' beam shown in figure,

Udl on slab $=5 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
Depth of slab $=120 \mathrm{~mm}$
Use M_{20} and Fe 415 for following figure

Solution: Given Data:- L beam

C/C Spacing $=4 \mathrm{~m}=4000 \mathrm{~mm}$
$\mathrm{l}=\mathbf{4 m}=\mathbf{4 0 0 0} \mathrm{mm}$
Depth of slab= $D_{f}=\mathbf{1 2 0} \mathbf{~ m m}$
Udl on slab $=5 \mathrm{KN} / \mathrm{m}^{2}$
Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
Fe $415=\mathbf{F y}=\mathbf{4 1 5} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{M}_{20}=$ Fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$

STEP 1: To find dimensions

Overall Depth $=\mathrm{D}=\frac{l}{12}$ to $\frac{l}{15}$
Overall Depth $=\mathrm{D}=\frac{4000}{12}$ to $\frac{4000}{15}$
Overall Depth=D $=333.33 \mathrm{~mm}$ to 266.67 mm
Assuming D=300 mm
Assuming effective cover $=\mathrm{d}^{\prime}=50 \mathrm{~mm}$
Effective depth $=\mathrm{d}=$ D-d' $=300-50=250 \mathrm{~mm}$
Width of beam
$\mathrm{b}_{\mathrm{w}}=\frac{D}{3}$ to $\frac{2 D}{3}$
$\mathrm{b}_{\mathrm{w}}=\frac{300}{3}$ to $\frac{2 \times 300}{3}$
$\mathrm{b}_{\mathrm{w}}=100 \mathrm{~mm}$ to 200 mm
Assu $\min g \mathrm{~b}_{\mathrm{w}}=200 \mathrm{~mm}$
For L beam
$\mathrm{b}_{\mathrm{f}}=\frac{l_{0}}{12}+b_{w}+3 D_{f}<$ C/C distance
$l_{0}=1+\frac{b_{w}}{2}+\frac{b_{w}}{2}=4000+\frac{200}{2}+\frac{200}{2}=4200$
$\mathrm{b}_{\mathrm{f}}=\frac{4200}{12}+200+3 \times 120<4000 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{f}}=910 \mathrm{~mm}<4000 \mathrm{~mm}(\mathrm{ok})$

STEP 2: To calculate loading

Loading

a) Live Load $(\mathrm{Udl})=5 \mathrm{KN} / \mathrm{m}^{2}$
b) Floor Finish $=1 \mathrm{KN} / \mathrm{m}^{2}$
c) Self Weight of slab $=$ Df x Density of concrete

$$
=0.12 \times 25=3 \mathrm{KN} / \mathrm{m}^{2}
$$

Total Load $=\mathrm{a}+\mathrm{b}+\mathrm{c}=9 \mathrm{KN} / \mathrm{m}^{2}$
Load per meter $=9 \times$ C/C distance $=9 \times 4=36 \mathrm{KN} / \mathrm{m}^{2}$
Self Weight of web $=$ Area of web x Density of concrete
Self Weight of web $=0.2 \times 0.18 \times 25=0.9 \mathrm{KN} / \mathrm{m}^{2}$
Total Load $=36+0.9=36.9 \mathrm{KN} / \mathrm{m}^{2}$
Factored load $=\mathrm{Wu}=1.5 \times 36.9=55.35 \mathrm{KN} / \mathrm{m}^{2}$
Maximum bending moment $=\mathrm{M}_{\mathrm{d}}=\frac{W u \mathrm{l}_{0}{ }^{2}}{8}=\frac{55.35 \times 4.2^{2}}{8}=122.04 \mathrm{KN} . \mathrm{m}$
STEP 3: To find ultimate moment
Assuming $\mathbf{X u}=\mathrm{D}_{\mathrm{f}}$ (Balance Section)
$\mathbf{M u}_{1}=\mathbf{0 . 3 6} \times \mathbf{F}_{\mathrm{ck}} \mathbf{x} \mathbf{X u} \times \mathrm{b}_{\mathrm{f}} \mathbf{X}(\mathbf{d}-\mathbf{0 . 4 2} \mathbf{x} \mathbf{X u})$
Put $\mathrm{Xu}=\mathrm{D}_{\mathrm{f}}=\mathbf{1 2 0} \mathbf{~ m m}$
$\mathrm{Mu}_{1}=\mathbf{0 . 3 6} \times 20 \times 120 \times 910 \times(250-0.42 \times 120)$
$\mathrm{Mu}_{1}=156.93 \mathrm{X} 10^{6} \mathbf{N m m}=156.93 \mathrm{KNm}$
STEP 4: To compare $M_{u 1}$ and M_{d}
$\mathbf{M}_{\mathbf{d}} \leq \mathbf{M u}_{1}$
$122.02 \leq 156.93$
The assumption is correct
NA lies in flange
STEP 5: To calculate area of steel
$\mathbf{A}_{\text {st }}=\frac{0.5 \mathrm{Fck}}{\mathrm{Fy}}\left[1-\sqrt{1-\frac{4.6 \mathrm{M}_{\mathrm{d}}}{\mathrm{Fckb}_{\mathrm{f}} \mathrm{d}^{2}}}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$
$\mathbf{A}_{\text {st }}=\frac{0.5 \times 20}{415}\left[1-\sqrt{1-\frac{4.6 \times 122.02 \times 10^{6}}{20 \times 910 \times 250^{2}}}\right] 910 \times 250$
$A_{\text {st }}=1580.28 \mathrm{~mm}^{2}$
Assume diameter of bar $=\boldsymbol{\Phi}=\mathbf{2 0} \mathbf{~ m m}$
Number of bars $=\frac{\text { Ast }}{(\pi / 4) \times \phi^{2}}=\frac{1580.28}{(\pi / 4) \times 20^{2}}=5.030 \cong 5$
$\mathrm{A}_{\mathrm{st} \min }=\frac{0.85 \mathrm{~b}_{\mathrm{w}} \mathrm{d}}{\mathrm{Fy}}$.
$\mathrm{A}_{\text {st min }}=\frac{0.85 \times 200 \times 250}{415}=102.40 \mathrm{~mm}^{2}$
Maximum Area of steel for beam
Ast ${ }_{\text {Max }}=0.04 \times \mathrm{b}_{\mathrm{w}} \times \mathrm{D}$ \qquad
Ast ${ }_{\text {Max }}=0.04 \times 200 \times 300$
Ast ${ }_{\text {Max }}=2400 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st min }}<\mathrm{A}_{\text {st max }}$
$102.40<2400$ (ok)
STEP 6: To find depth of neutral axis (From page No. 96 IS CODE)
$\mathrm{Cu}=\mathrm{Tu}$
$0.36 \mathrm{FckXub}_{\mathrm{f}}=0.87 \mathrm{Fy} \mathrm{Ast}$
$\mathrm{Xu}=\frac{0.87 \text { Fy Ast }}{0.36 \mathrm{Fck} \mathrm{b}_{\mathrm{f}}}=\frac{0.87 \times 415 \times 1580.28}{0.36 \times 20 \times 910}=87.08 \mathrm{~mm}$
$\mathrm{Xu}<\mathrm{D}_{\mathrm{f}}$
$87.08<120$, Assumption is correct
STEP 7: To find depth of critical neutral axis (From page No. 70 IS CODE)
$\mathbf{X u} \max =\mathbf{0 . 4 8 d}$ \qquad .For Fe 415

Xu max $=0.48 \times 250=120 \mathrm{~mm}$
STEP 8: To compare Xu and Xu max
$\mathrm{Xu} \prec \mathrm{Xu}$ max
$87.08<120$
then section is under reinforced

